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Abstract. The problem of optimal quantitative approximation of an arbitrary bi-
nary relation by a partial order is discussed and the results of some experiments
are discussed. In general, this problem is NP-hard even for very simple quantita-
tive measures, so some alternative sub-optimal but relatively efficient algorithms
are discussed and tested.

Keywords: approximations of relations, partial orders, similarity, efficacy of algo-
rithms

1 Introduction

Consider the following problem (cf. [11]): we have a set of data that have been obtained
in an empirical manner. From the nature of the problem we know that the set should be
partially ordered, but because the data are empirical it is not. In a general case, this
relation may be arbitrary. What is the ‘best’ partially ordered approximation of an ar-
bitrary relation and how this approximation can be computed?” Some solutions have
been proposed in [11,13,22] and their efficacy is discussed in this paper. Areas of im-
mediate applications of any ‘best’ partial order approximation algorithm include group
ranking, social choice, pairwise comparisons based non-numerical ranking, analysis of
subjective judgments, etc. ([7,8,10,15]). To illustrate this concept, imagine organizing
a diverse collection of books in a library without a clear hierarchy. How do we best
arrange them in a manner that respects certain desired orderings, like genre or author-
ship, yet acknowledges the inherent complexity of literary classification? This analogy
simplifies our exploration into the realm of partial orders.

It was shown in [13] that the problem is NP-hard even for very simple similarity
measures. On the other hand there are a few O(n3) partial order approximations, in-
cluding the classical Schröder’s from 1895 [11,13,22], but their efficacy is basically
unknown.

In this paper we will analyse experimental efficacy of three partial order approxima-
tions, the classical Schröder approximation, denoted (R+)• [22], the reverse Schröder
[11], denoted (R•)+, and some randomized approximation from [13], denoted R⊙. For
comparisons, we will use four different similarity measures, namely, absolute similar-
ity [13], Kemeny distance [5,16], popular Jaccard index [5,9], and a new asymmetric
similarity measure proposed in this paper.



2 Relations, Partial Orders and Partial Order Approximations

In this section we will recall basic concepts and results used in this paper [2,7,11,21].
Let X be a finite set and R ⊆ X ×X be a relation on X . If (a,b) ∈ R we will often

write aRb. Every such relation R can be interpreted as a directed graph GR = (V,E)
where V = X and E = R. In this paper, we will consider the terms ’relation’ and ’graph’
as equivalent, and use both of them, dependently on a context.

For two relations R,S on X , their composition, denoted RS, is defined as xRSz ⇐⇒
∃y ∈ X . xRy∧ ySz. The identity relation IdX , is defined as IdX = {(x,x) | x ∈ X}. For
every relation R on X , and every i = 0,1, . . . ,∞, we define the relation Ri, as R0 = IdX
and Ri+1 = RRi, for i = 0,1, . . . ,∞.

The transitive closure of R, denoted R+, is defined as R+ =
⋃

∞
i=1 Ri.

A relation <∈ X × X is a (sharp) partial order if it is irreflexive and transitive.
Formally, ¬(a < a) and a < b < c =⇒ a < c for all a,b,c ∈ X .

For every relation R on X , its cyclic closure, denoted Rcyc, is defined as follows
∀a,b ∈ X . aRcycb ⇐⇒ aR+b∧bR+a. In graph terminology, if aRcycb then a and b are
strongly connected in GR = (X ,R).

For every relation R on X , the acyclic refinement of R, denoted R•, is defined as
R• = R \Rcyc. In graph terminology, the graph GR• = (X ,R•) has been derived from
GR = (X ,R) by deleting all edges from all strongly connected components of GR.

Let R be a relation on X and a ∈ X . We define: aR = {x | aRx} and Ra = {x | xRa}.
For any relation R on X , we define the equivalence relation with respect to R, de-

noted ≡R, as follows ∀a,b ∈ X . a ≡R b ⇐⇒ aR = bR∧Ra = Rb.
This relation was first proposed for R being a partial order ([7]). It was later gener-

alized for arbitrary relations in ([11]). Elements a and b are equivalent with respect to R
if they have the same set of elements related to them and they relate to the same set of
elements. In principle, if a ≡R b, then there is nothing in R that can distinguish between
a and b (with respect to the relation R).

The following proposition characterizes the basic properties of the above concepts.

Proposition 1 ([11]).

1. R ⊆ R+.
2. R• ⊆ R, R• is acyclic (i.e. also irreflexive), and aR•b ⇐⇒ aRb∧¬(bR+a).
3. If R is a partial order then R = R+ = R•.
4. ≡R ⊆≡R+ and ≡R ⊆≡R• . □

The above proposition presents basic hints for partial order approximations. R+ is
a kind of an upper approximation of R, R• is a kind of lower approximations, and each
partial order is acyclic and transitive.

We say that a partial order <R is an approximation of a relation R if R and <R are
‘similar’ or ‘close’. The definition is very imprecise and relies heavily on intuition and
what R is supposed to represent. Unfortunately, a widely accepted formal definition of
relation approximation does not exist so far [13].

The standard approach is to modify a given relation R so it has the desired proper-
ties, for partial ordering this would be acyclity and transitivity.
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This standard approach was first proposed by E. Schröder in 1895 [22]. A slightly
more formal definition of partial ordered approximation, motivated by ranking and pair-
wise comparisons, and called property-driven partial order approximation was pro-
posed in [11] and [12].

Schröder’s approximation has many equivalent formulations, but in the terminology
of this paper, for a given arbitrary relation R, it is just (R+)•.

Theorem 1 (E. Schröder, 1895, [22]). For every relation R on X, the relation (R+)• is
a partial order. □

Despite its popularity, the efficacy of Schröder’s approximation most likely has
never been sufficiently studied. This is one of the goals of this paper.

In [11,12] the definition of property-driven partial order approximation was pre-
sented and its properties, motivation and interpretations were discussed.

Definition 1 ([11]). A partial order <⊆ X ×X is a property-driven partial order ap-
proximation of a relation R ⊆ X ×X if it satisfies the following four conditions:

1. a < b =⇒ aR+b,
2. aR•b =⇒ a < b,
3. a ≡R b =⇒ a ≡< b.
4. a < b =⇒ ¬aRcycb (or, equivalently a < b =⇒ ¬bR+a). □

Definition 1 was motivated by the following intuitions [12]. Since R+ is the smallest
transitive relation containing R, and due to informational noise, imprecision, random-
ness, etc., some parts of R might be missing, it is reasonable to assume that R+ is the
upper bound of <, so condition (1). Condition (2) defines the lower bound. The great-
est partial order included in R usually does not exist, but when R is interpreted as an
estimation of a ranking, R• appears to be a reasonable lower bound [12]. Condition
(3) ensures preservation of the equivalence with respect to R. Condition (4) says that
if aRcycb then usually a and b are incomparable. If R is interpreted as an estimation of
a ranking, then in most cases aRcycb it is interpreted that a and b are indifferent [8].
Similar interpretations take place in concurrency theory [17].

The following result characterizing property-driven partial order approximations
has been proven.

Theorem 2 ([11]).

1. (R•)+ is a partial order.
2. The relations (R•)+ and (R+)• are property-driven partial order approximations

of R.
3. (R•)+ ⊆ (R+)• . □

The relation (R•)+, introduced in [11], is in this paper called reverse Schröder ap-
proximation. Some other property-driven partial order approximations we considered
in [10] and [12], however, (R•)+ and (R+)• are the two most important ones, the only
ones that are also analysed in [13]. Again, how good both (R•)+ and (R+)• really are,
have never being tested.
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3 Similarities and Optimal Approximation

The definition and analysis of optimal approximation problem requires using the con-
cept of similarity. As opposed to the orthogonal concept of a distance, the concept of
similarity does not have standard indisputable axiomatization ([5,13,20,23]). Depend-
ing on the area of application, some desirable properties may vary ([5,13,14,18,20,23]),
sometimes substantially ([13,20]). We will say that a (scaled) similarity sim is metrical,
if the function 1− sim(A,B) is a distance for appropriate objects A,B (cf. [5]). Many
useful and popular similarities are not metrical (cf. [13,23]).

Recall that for any set of objects O, a distance is any function dist : O × O →
[0,∞) such that dist(α,β) = 0 ⇐⇒ α = β, dist(α,β) = dist(β,α) and dist(α,γ) ≤
dist(α,β) + dist(β,γ), for all α,β,γ ∈ O. The latter inequality is called the ‘triangle
property’ ([5]).

In this paper we will use three similarities and one distance that work well when one
of the relations is a partial order, namely absolute similarity [13], Kemeny distance [16],
Jaccard index [9], and newly defined asymmetric similarity, called weighted absolute
similarity.

• The absolute similarity between two relation R and S is defined as [13]:

simA(R,S) = |R∩S|.

It is argued in ([13]) that the absolute similarity is most likely the simplest, yet adequate,
measure of similarity between two binary relations.

• The Kemeny distance [16] is defined as as

distK(R,S) = |(R\S)∪ (S\R)|= |R\S|+ |S\R|= |R∪S|− |R∩S|.

Note that distK(R,S), which is just a cardinality of symmetric difference ([21]), is a
proper metric, i.e. the ‘triangle property’: distK(R,S)≤ distK(R,T )+distK(T,S) is sat-
isfied for all relations R,S,T (cf. [5,16]). The symmetric difference between two rela-
tions is often considered a measure of how “far apart” they are ([5]).

It was argued in [13] that simA(R,S) better measures the relationship between R
and S with respect to acyclity, while distK(R,S) measures this relationship better with
respect to transitivity, and we cannot replace one by another.

• Jaccard similarity [9] is defined as:

simJ(R,S) =
|R∩S|
|R∪S|

.

Jaccard index, proposed in 1901, is the oldest quantitative formula to measure similarity.
It is a special case of more general Marczewski-Steinhaus similarity [18]; and it is still
the most popular one with a lot of various applications. Jaccard similarity has values
in the interval [0,1], and we can define Jaccard distance, distJ , simple as distJ(R,S) =
1− simJ(R,S) =

|R∪S|−|R∩S|
|R∪S| . It can easily be shown that distJ is a proper distance, i.e. it

has the ‘triangle property’. One can also interpret the Jaccard similarity as a (symmetric)
weighted version of the absolute similarity simA.
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• The asymmetric weighted absolute similarity is defined as follows:

simAWA(R,S) =
|R∩S|
|R|

.

The above similarity measure is asymmetric, it measures ‘how S is similar to R’, but
not necessarily vice versa. Asymmetric similarity measures do exist and have right in-
terpretations for many applications. The classical example is to compare a variant to a
prototype [23]. In our case, we are interesting in approximating R by S, and not nec-
essarily vice versa. For this reason we think that the asymmetric weighted absolute
similarity might be a better measure than the standard Jaccard similarity. The similarity
simAWA is not metrical. It can also be considered as a special case of a weighted version
of the Jaccard index [1,19].

Choosing a proper similarity measure is a complex issue. It has been discussed in
some detail in [3,4], and for some special cases in [13,23].

Proposition 2 ([13]).

1. simA(R,(R+)•) = simA(R,(R•)+) = |R•|.
2. distK(R,(R•)+)≤ distK(R,(R+)•).
3. simJ(R,(R•)+)≥ simJ(R,(R+)•). □

Corollary 1. simAWA(R,(R+)•) = simAWA(R,(R•)+) = |R•|
|R| . □

Proposition 2 indicates that for Kemeny distance and Jaccard similarity, the par-
tial order (R•)+ performs better than (R+)•, but how better is beyond the theoretical
analysis.

Let sim(. . .) be some similarity for binary relations over some set X , dist(. . .) be
some distance for binary relations over X , and let PO(X) be the set of all partial orders
over the set X .

A relation S ∈ is an optimal partial order approximation of the relation R with
respect to sim, if and only if S ∈ PO(X), and

∀S′ ∈ PO(X). sim(R,S)≥ sim(R,S′).

Similarly, S is an optimal partial order approximation of the relation R with respect
to dist, if and only if S ∈ PO(X), and

∀S′ ∈ PO(X). dist(R,S)≤ dist(R,S′).

In many cases, we have more than one optimal approximation, for both definitions.

The main technical contribution of the paper [13] is that finding optimal approxi-
mation is NP-hard even for such simple similarities as absolute similarity simA(R,S) =
|R∩S|. On the other hand, the property-driven partial order approximations (R•)+ and
(R+)• are O(n3), but we really do not know how accurate they are.

The following simple randomized algorithm for partial order approximation, de-
noted R⊙, again with O(n3) time complexity, has been proposed in [13].
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Algorithm 1 (Calculation of R⊙ [13]) Let R ⊆ X ×X and |X |= n.

1. Calculate R•. Set R̄ = R•.
2. Set R⊙ := R̄.
3. Pick randomly (a,b) ∈ R\ R̄ and add (a,b) to R̄, i.e., R̄ := R̄∪{(a,b)}.
4. If R̄ is acyclic, i.e., (R̄)cyc = /0, go to (2).
5. Return R⊙ := (R⊙)+.

How the partial order R⊙ performs when compared with (R•)+ and (R+)• was a open
problem, and the main motivation of this paper.

4 Experiments and Their Results

Since finding an optimal partial order approximation is not feasible for even medium
size relations, when it comes to applications, we have to decide which feasible approx-
imation, (R•)+, (R+)• and R⊙ should be chosen. Since theoretical analysis is incon-
clusive ([13]), the only choice is to conduct some empirical experiments using various
similarity measures.

We generated randomly relations of various sizes, and for each relation R we calcu-
lated:

– simA(R,(R•)+) = simA(R,(R+)•) = |R•|, simA(R,R⊙),
– distK(R,(R•)+), distK(R,(R+)•), distK(R,R⊙),
– simJ(R,(R•)+), simJ(R,(R+)•), simJ(R,R⊙),
– simAWA(R,(R•)+) = simAWA(R,(R+)•) = |R•|

|R| , simAWA(R,R⊙).

Then, we aggregated and analysed the obtained results. The algorithms used to compute
all the similarity measures are standard, their descriptions can be found for example in
[2]. All programming was done in Python and all codes can be found in [24]. The only
non standard algorithm was the one used for random graphs generations.

For random graphs generation we used Erdös-Rényi algorithm [6]. This algorithm
has two parameters, edge probability ep, and cycle probability cp. The version we used
assumed uniform distribution for both edges and cycles. We conducted nine series of
experiments, for all pairs (ep,cp) where ep,cp∈ {0.25,0.5,0.75}. The value ep= 0.25
indicates that the graphs generated are rather sparse, while ep = 0.75 indicates that the
graphs are rather dense. The value cp = 0.25 indicates that most graphs are DAGs
(Directed Acyclic Graphs) and cp = 0.75 indicates a lot of cycles.

In each series we generated graphs with numbers of nodes from 1 to 49, 100 graphs
for each number of nodes, and then perform appropriate calculations. All the detailed
results, including forty eight graphs, illustrating all different cases and aspects, can be
found in [24].

It was reasonable to expect different results for different types of graphs, however,
the results turned out to be surprisingly homogeneous. The number of cycles (parameter
cp ∈ {0.25,0.5,0.75}) practically does not matter. For sparse graphs, i.e. ep = 0.25, the
results were slightly different than for ep = 0.5 and ep = 0.75, but not significantly.
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Below, in Figure 1, we present the results for ep = 0.5 and cp = 0.5, i.e. the most
average case. This is a representative example for all cases except the Kemeny dis-
tance for ep = 25, i.e. sparse graphs. For the asymmetric similarity simAWA we use the
percentage scale from 1 to 100.
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Fig. 1: The graphs of similarity measures for ep = 0.5 and cp = 0.5.

In this case, the approximation R⊙ always outperforms both (R•)+ and (R•)+. For
Absolute similarity simA and Asymmetric weighted absolute similarity simAWA, the re-
sults are the same (Proposition 2 and Corollary 1) for (R•)+ and (R+)•, but for Ke-
meny distance and Jaccard similarity, (R•)+ - the reverse Schröder, performs better than
(R+)• - the classical Schröder. For Kemeny distance the differences are the smallest.

Both Jaccard similarity and Asymmetric weighted absolute similarity stabilize at
about 25 nodes, so we may safely assume that the results for all n ≥ 30 would be almost
identical.

While R⊙ outperforms both (R•)+ and (R•)+ rather substantially, the differences
between (R•)+ and (R+)• are not that big.
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The results for other values of ep and cp, are practically the same. Of course, the
denser graphs have for edges for the same amount of vertices, so numerical values of
functions simA, distK , simJ and simAWA vary, but the shapes of functions and propor-
tional differences between R⊙,(R•)+ and (R+)• are almost identical.

In all cases, both Jaccard similarity and asymmetric weighted absolute similarity
stabilize at less than 25 nodes. The dense functions/graphs stabilize slightly earlier, at
20 nodes for ep = 0.75. The values of functions for n ≥ 30 are called saturated values,
and they are presented in Table 1 below (bold fonts). They are all the same for all n≥ 30.

Values for number of nodes ≥ 30 (saturated values, bold fonts)

Jaccard similarity Asymmetric weighted absolute similarity

ep cp R⊙ (R•)+ (R+)• ep cp R⊙ (R•)+ and (R+)•

0.25 0.25 0.28 0.24 0.19 0.25 0.25 0.58 0.33
0.25 0.5 0.29 0.2 0.18 0.25 0.5 0.55 0.32
0.25 0.75 0.30 0.24 0.21 0.25 0.75 0.52 0.31
0.5 0.25 0.39 0.30 0.25 0.5 0.25 0.53 0.37
0.5 0.5 0.41 0.31 0.28 0.5 0.5 0.52 0.37
0.5 0.75 0.41 0.30 0.25 0.5 0.75 0.51 0.37

0.75 0.25 0.47 0.35 0.26 0.75 0.25 0.52 0.38
0.75 0.5 0.48 0.36 0.30 0.75 0.5 0.51 0.37
0.75 0.75 0.49 0.36 0.30 0.75 0.75 0.51 0.38

Table 1: Saturated values for Jaccard similarity and Asymmetric weighted absolute similarity.

With respect to relation/graph density, the Jaccard similarity, simJ , is better for dense
graphs and worse for sparse graphs, for all three approximations R⊙,(R•)+ and (R+)•.
This could be explained by the fact that all three approximations use transitive closure
at some point, and for sparse graphs, on average, the transitive closure proportionally
adds more edges than in the case of dense graphs.

For the asymmetric absolute similarity, simAWA, we have a little bit different story.
Since simAWA(R,(R•)+) = simAWA(R,(R+)•) = |R•|/|R|, we have only two columns of
numbers, and in this case, the results are much more uniform. For the approximation
R⊙, the results are almost identical, around 0.52, except the values in two top rows of
the above table, which are slightly bigger, 0.55 and 0.58. As opposed to Jaccard similar-
ity, the asymmetric absolute similarity performs slightly better for sparse graphs. This
would indicate that for sparse graphs, the relation R⊙ \R is proportionally bigger than
for dense graphs. The saturated values for (R•)+ and (R+)• are practically constant at
about 0.37, with the exception of sparse graphs, where they are around 0.32. In this
case, the trend is the same as for Jaccard similarity, the worse performance for sparse
graphs, but the difference is smaller.
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5 Summary and Final Comments

This paper deals with the efficacy of approximating arbitrary binary relations by par-
tial orders. The problem is NP-hard in general [13], however there are three, intuitively
promising, O(n3) approximations, namely the classical Schröder approximation from
1895, (R+)•, [22], the reverse Schröder approximation (R•)+ proposed in [11], and
randomized approximation R⊙ proposed in [13]. In this paper we tested the efficacy
of these three approximations. Four similarity measures were used, absolute similarity
[13], Kemeny distance [16], Jaccard similarity [9], and a new similarity, simAWA, in-
troduced in Section 3 of this paper. The tests were performed on randomly generated
relations of various sizes and densities. Erdös-Rényi algorithm [6] was used to generate
random graphs.

The randomized approximation R⊙ substantially outperformed both (R•)+ and (R+)•

in all cases. The approximation (R•)+, as expected due to Proposition 2, performed bet-
ter than (R+)•, but the differences were much smaller.

We would like to point out that this study still does not say much about the relation-
ship of R⊙ to any optimal approximation (as defined in Section 3 and [13]). The approx-
imation R⊙ is a randomized algorithm, but its theoretical relationship to optimal approx-
imations is an open problem not discussed in this paper. Assume that Ropt is an optimal
approximation of R, and simJ(R,Ropt) = α,simAWA(R,Ropt) = β. From the results of
this paper. all we can derive is that on average, for sparse graphs: α ≥ 0.3,β ≥ 0.58, for
medium density graphs: α ≥ 0.41,β ≥ 0.53, and for dense graphs α ≥ 0.49,β ≥ 0.52.
We also can say that, on average, both (R•)+ and (R+)• are rather far away from opti-
mal approximations. Most likely because, in both cases, we are removing much more
cycles than might be needed.
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6. Erdös P., Rényi A., On Random Graphs, Publicationes Mathematicae 6 ,3-4 (1959) 290–297.
7. Fishburn, P. C., Interval Orders and Interval Graphs, J. Wiley, New York 1985.
8. French S., Decision Theory, Ellis Horwood, New York 1986.

9



9. Jaccard P., Étude comparative de la distribution florale dans une portion des Alpes et des
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