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Abstract. In argumentation theory, semantics defined by Dung evaluate subsets
of arguments by classifying each into two categories: accepted or rejected. This
makes some applications (like online debate) more complex since many accepted
arguments can be returned without any insight into the strength of each argu-
ment. Conversely to extension-based semantics, ranking-based semantics allow
us to determine the strength of acceptability of each argument. However, this ap-
proach does not evaluate sets of arguments but each argument individually. In
this paper, our goal is to classify the arguments more precisely than just accept-
ing or rejecting them and, therefore, to find a total pre-order of arguments. For
this purpose, we will present a method to, first, rank subsets of arguments us-
ing extension-based semantics and, then, apply power indices of social choice to
this ranking to find a pre-order of arguments. Our approach has the advantage of
combining extension-based semantics and lexicographic social ranking. Indeed,
given two arguments, it allows us to state which one is more plausible than the
other and if they are jointly acceptable or not.
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1 Introduction

Abstract argumentation is a discipline that studies how arguments coexist. It is based
on philosophical and informal theories of argumentation. Arguments are considered as
nodes in a graph, abstracting away from their actual content. The discipline was initi-
ated by Dung [11], where an argumentation framework is depicted as a graph in which
arguments are nodes and an argument a attacking an argument b is represented by an
arrow from node a to node b. The field has since evolved, particularly to meet the de-
mands arising from applications in computer science. This evolution involves adding
supporting relationships, strength of arguments [5], preference among arguments [10],
and more. It provides a systematic approach to dealing with conflicting information
and uncertain reasoning by modeling the process of argumentation and debate. In the
context of AI, this allows rational decisions based on the information available. These
decisions are rational because they employ different semantics which have been defined,
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starting with Dung [11]. A semantic can be seen as capturing a particular notion of ra-
tionality, ranging from less demanding to more demanding. They allow us to determine
whether a set of arguments can be jointly accepted or not. So, arguments were classified
into two categories: accepted and rejected by using extension-based semantics defined
by Dung [11]. However, an argumentation framework can count many arguments, re-
quiring a more precise ranking than just two categories. Instead of binary classifying
arguments as accepted or rejected, the problem of determining the strength of each
argument has recently received considerable interest. The aim is to associate every ar-
gumentation framework with an ordering over the arguments (usually a total pre-order)
according to their degree of acceptability using the various ranking-based semantics
proposed in the literature [6,7,5,10,4,17,18,9]. This approach evaluates each argument
individually, but does not allow to state that a set of arguments is jointly acceptable.

To overcome these problems, we propose an approach combining extension-based
semantics and ranking-based semantics. The method follows two steps: The first step
establishes a ranking over sets of arguments based on the inclusion relation of extension-
based semantics, including stable, preferred, complete, admissible and conflict-free.
These semantics indicate whether a set of arguments is acceptable and whether a set
of arguments is more plausible than another set. The second step uses ranking-based
semantics, particularly Power Index-based semantics [7], which employs Banzhaf and
Shapley power indices to refine the ranking established in the first step. Power indices
are tools that will allow measuring the influence of an argument based on other argu-
ments. They are beneficial in various fields, such as multicriteria analysis, cooperative
game theory [13] and machine learning [16]. Our approach allows us to rank arguments
and determine if a set of arguments are jointly accepted. Namely, it will enable going
from a ranking over sets of arguments to a ranking over arguments.

The paper is organized as follows: In the next section, we will recall what an argu-
mentation system is and the various semantics that we will use. Section 3 describes and
gives the proposed method for ranking arguments following two main steps. Section
4 discusses some of the properties proposed in the literature and introduces new ones.
Section 5 gives some related works, and finally, we conclude the paper.

2 Preliminaries

In this section we present Dung’s argumentation framework [11] and the main seman-
tics used in the literature.

Definition 1. [11] An argumentation framework (AF ) is a pair AF=〈A,R〉 with A
a finite set of arguments and R ⊆ A×A an attack relation between arguments. An
argument a ∈ A attacks an argument b ∈ A, if (a, b) ∈ R. An argument c ∈ A defends
b against an attacker a if c attacks a. We denote by Att(a) the set of all attackers of a in
A (i.e. Att(a)={b ∈ A|(b, a) ∈ R}) and by Def(a) the set of all defenders of a.

Argumentation frameworks can be represented by a directed graph, where nodes are
arguments, and edges are attack relations between two arguments. Several semantics
have been defined to select a set of accepted arguments; such sets are called extensions.
We recall the definitions of the main semantics on which our method is based.
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Definition 2. [11] Given an argumentation frameworkAF=〈A,R〉, a set of arguments
S ⊆ A is conflict free in AF if ∀a, b ∈ S, (a, b) /∈ R.

This extension facilitates the presentation of a set of arguments without any inter-
argument attacks. Naturally, an AF can manifest multiple distinct conflict-free exten-
sions. Given the context of the problem, there may be a desire to impose supplementary
constraints on the arguments deemed acceptable. We present below some of these con-
straints, which are frequently employed in argumentation theory:

A conflict free set S is admissible if it defends all its arguments against each of their
attackers: i.e., for every attacker of arguments in S, there exists an argument in S that
defends it. An admissible set S is:

– a complete extension if each argument defended by S belongs to S.
– a preferred extension if it is a ⊆-maximal set admissible of AF .
– a stable extension if it attacks each argument in A\S.

We denote by εσ the set of extensions of AF for the semantics σ ∈ {cf, ad(missible),
co(mplete), pr(eferred), st(able)}.

Example 1. In Figure 1, we have an argumentation framework AF composed of
A = {a, b, c, d, e} andR = {(a, b), (b, c), (e, b), (b, d), (d, b), (d, e), (e, d)}.

a b

c

e d

Fig. 1. An example of a Dung’s Argumentation Framework.

The sets of extensions for the conflict-free, admissible, complete, preferred and sta-
ble semantics are respectively: εcf = {∅, {a}, {b}, {c}, {d}, {e}, {a, c}, {a, d}, {a, e},
{c, d}, {c, e}, {a, c, d}, {a, c, e}}, εad = {∅, {a}, {d}, {e}, {a, c}, {a, d}, {a, e}, {c, d},
{c, e}, {a, c, d}, {a, c, e}}, εco = {{a, c}, {a, c, d}, {a, c, e}} and εpr = εst = {{a, c, d},
{a, c, e}}.}

As we explained in the introduction, our approach will be grounded in the concept
of power indices derived from cooperative game theory. To be more precise, we will use
the Social Ranking Theory which makes use of an ordinal version of power indices, as
it is defined by Moretti et al. [2]. The objective of Social Ranking is as follows: when
presented with an order on coalitions (groups of individuals), the aim is to establish
an order on individual entities. In our framework, arguments assume the role of indi-
viduals, with coalitions representing subsets of arguments. Consequently, our task is to
delineate a procedure for establishing an order on arguments based on an existing order
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on subsets of arguments. To accomplish this, it is essential to initially define an ordering
mechanism for subsets of arguments. We denote the order on coalitions by w as in the
following and we suppose that it is a pre-order (transitive and reflexive).

Definition 3. Let AF=〈A,R〉 be an argumentation framework. A ranking w on the
coalitions, is a pre-order w on 2A. A coalition of arguments S is at least as acceptable
as a coalition of arguments X if S w X . S ∼ X is a shortcut for S w X and X w S ,
and S A X is a shortcut for S w X and X 6w S.

Using this relation on the coalitions, our aim is to define an order on the arguments,
that we call a social ranking on arguments.

Definition 4. A social ranking� on the arguments, is a pre-order� onA. An argument
a is at least as acceptable as an argument b if a � b. a ∼ b is a shortcut for a � b and
b � a, and a � b is a shortcut for a � b and b 6� a.

3 Ranking of Arguments

Our objective is to associate every argumentation framework with a ranking of argu-
ments (social ranking). The method comprises two steps: 1) Establishing a first ranking
over sets of arguments on the basis of extension-based semantics [11]. The ranking re-
turned at this stage considers the inclusion relation between semantics (see Figure 2).
2) Refining the ranking established in the first step using Power Index-based semantic
[7], which employs Banzhaf and Shapley power indices. Power indices are tools that
will allow measuring the influence of an argument based on other arguments. They are
beneficial in various fields, such as multicriteria analysis and cooperative game theory.
To the best of our knowledge, our approach is the first that combines these indices with
an input of an ordinal ranking.

3.1 Rankings over sets of arguments by considering the inclusion relation
between semantics

An inclusion relationship exists among the different semantics [11]. Any stable exten-
sion is a preferred extension; any preferred extension is a complete extension; any com-
plete extension is an admissible extension, and any admissible extension is a conflict-
free extension (see Figure 2).

From an argumentation framework, we will retrieve the extensions: conflict-free,
admissible, complete, preferred, and stable. Then, we exploit the inclusion relationship
to classify these extensions based on the semantics to which they belong. We will cre-
ate a ranking by placing stable sets in the first position; then in the second position,
the sets obtained with the semantic {preferred}\{stable}. Next, we will place the sets
{complete}\{stable, preferred}, followed by the sets {admissible}\{stable, preferred,
complete}, and finally the {conflict-free}\{stable, preferred, complete, admissible}. All
the remaining sets will be placed in the last position as they do not belong to any se-
mantics and are, therefore, unacceptable. In the end, we will have a ranking with six
equivalence classes with possible gaps that we represent by () with abuse of notation:
Σ1 w Σ2 w Σ3 w Σ4 w Σ5 w Σ6, with in Σ1 the sets in εst, in Σ2 the sets in εpr, in
Σ3 the sets in εco, in Σ4 the sets in εad, in Σ5 the sets in εcf and in Σ6 the rest.
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Fig. 2. An overview of the inclusion relation of different semantics.

Remark 1. There is another well-known extension we do not use, that is, grounded.
Any grounded extension is a complete extension. Therefore, by using this semantic,
we would have fewer equivalence classes. Since our goal is to achieve a more detailed
ranking, we have focused on the semantics depicted in Figure 2.

Example 2. The ranking obtained by using the inclusion relationship between the se-
mantics for the AF of Figure 1 is as follows: ({a, c, e} ∼ {a, c, d}) w () w ({a, c}) w
(∅ ∼ {a} ∼ {e} ∼ {d} ∼ {a, e} ∼ {a, d} ∼ {c, d} ∼ {c, e}) w ({b} ∼ {c}) w rest.

Remark 2. With abuse of notation, in the rest of the paper, we will denote the coali-
tion "abc" instead of {a, b, c} for better readability. The symbol ∼ represents that the
coalitions are in the same extension.

This method is justified by inclusion. By placing the most restrictive extensions,
i.e., those that appear in multiple semantics, at the top of the ranking, we consider
the most stringent criteria. This approach is also justified by the notions of skeptically
and credulously accepted arguments. We refer to an argument as "skeptically accepted"
if it is present in all the extensions of a chosen semantics. If found in at least one
extension, it is considered "credulously accepted." A sceptically accepted argument will
rank higher than a credulously accepted one. We can draw a parallel with our method
and state that coalitions in the stable extension are skeptically accepted and thus ranked
higher because they appear in all the extensions. Therefore, we justify our ranking by
prioritizing those that appear in more extensions, as they are considered more widely
accepted.
As we can observe, the result of this step concerns a ranking over sets of arguments.
The second step of our method consists in considering the ranking obtained by using
the inclusion relation between semantics, and some well-known ordinal power indices
[2] to establish a social ranking of arguments. In the existing literature, various ordinal
power indices have been put forth, each exhibiting preferences for specific aspects, such
as: we can give greater importance to arguments that enable a coalition to be accepted,
i.e., their marginal contribution (as in the Banzhaf ordinal index, see for instance [15]);
or we can prioritize arguments that appear at the top of the ranking and thus in numerous
extensions (as in the Lexicographic index, see for instance [1]) or we can compare
arguments pairwise in a Ceteris Paribus way, seeing each coalition as a potential voter
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in favor or not for one of the individual (using the CP majority index, see for instance
[12]) like in Social Choice Theory when we use the notion of Condorcet winner.

3.2 Using lexicographic social ranking rules for ranking of arguments

We choose the lexicographic index [1] to construct a ranking over arguments and to
expose some properties. We chose this index to highlight the arguments at the top of
the list, as they appear in more possible extensions according to our ranking of coali-
tions based on inclusion relationships. Moreover, this social ranking method is clearly
defined, with its axiomatisation documented (refer to [1]). Additionally, it demonstrates
commendable behavior in relation to manipulation strategies (see [2]). We start by pre-
senting this index. We denote by ik the number of sets in the equivalence class Σk
containing argument i:

ik = |{S ∈ Σk : i ∈ S}| (1)

for k = 1 . . . 6. If an equivalence class k is empty, then ik= 0 for all arguments i. Now, let
θ(i) be the 6-dimensional vector θ(i) = (i1, ..., i6) associated to the ranking of coalitions.
Consider the lexicographic order i ≥L j if either i = j or there exists t : ir = jr, r =
1, ..., t-1, and it > jt.

Definition 5. The lexicographic excellence (lexcel) [1] relation is the binary relation
� such that for all i, j ∈ A: i � j ⇐⇒ θ(i) ≥L θ(j).

Example 3. Let us apply lexcel to find the social ranking of arguments on the ranking
of coalitions of Example 2 based on Figure 1. First, we remind that we have: Σ1 =
({a, c, e}, {a, c, d}), Σ3 = ({a, c}), Σ4 = (∅ ∼ {a} ∼ {e} ∼ {d} ∼ {a, e} ∼
{a, d} ∼ {c, d} ∼ {c, e}),Σ5 = ({b} ∼ {c}) w rest.

Then, we have: θ(a) = (2, 0, 1, 3, 0, .)3, θ(b) = (0, 0, 0, 0, 1, .), θ(c) = (2, 0, 1, 2, 1, .),
θ(d) = (1, 0, 0, 3, 0, .) and θ(e) = (1, 0, 0, 3, 0, .).

At the end, we obtain a social ranking of arguments: a � c � e ∼ d � b 4

Remark 3. The inclusion of the empty set as an extension is acknowledged; nonethe-
less, its presence or absence does not influence the resultant order when employing the
lexcel method. It is important to highlight that this observation may not hold universally
across all social ranking methods; for instance, the ordinal Banzhaf index may exhibit
sensitivity to the presence or absence of the empty set.

In evaluating the outcomes of our method, a comparative analysis will be conducted
with another approach: the Power Index (PI)-Based Semantics introduced previously in
the literature ([7]). This comparison is pertinent as the PI-Based Semantics also lever-
ages power indices and incorporates coalitions, aligning with the methodology outlined
in our work. We present the following PI-based semantic, which is based on Banzhaf
scoring:

3 Because a appears two times in Σ1, zero time in Σ2, one time in Σ3, etc.
4 For instance in order to say that a � c, we compare the two vectors θ(a) and θ(c) in a lexico-

graphic way (2=2, 0=0, 1=1 but 3>2).
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The Banzhaf scoring of a characteristic function vσ on 2|A|, attributes to argument
i the score:

πBan
i (vσ) =

∑
S∈2N : i/∈S

1

2n−1
(
vσ(S ∪ {i})− vσ(S)

)
. (2)

The characteristic function vσ for semantic σ, with a set of argument S ⊆ A is:

vσ(S) =

{
1, if S ∈ εσ;
0, if otherwise .

One of the main differences between our approach and the PI-based one is that the
PI-based one chooses first a semantic and then makes a ranking while our approach
makes use of 5 different semantics, as illustrated in the next example.

Example 4. By applying the PI-based semantic with the Banzhaf scoring on the stable
semantic on the argumentation framework in Figure 3, we find: a ∼ b ∼ c ∼ d.
However, if we apply our method, we get:

– By using the inclusion relationship between semantics, we obtain the following
ranking over sets of arguments: (ad ∼ bc) w () w () w (∅ ∼ d ∼ a ∼ b) w (c ∼
cd) w rest.

– Applying lexcel on the obtained ranking, we have: d � a ∼ b � c.

c a

b d

Fig. 3. An AF example.

This example illustrates that our approach, leveraging more information than the PI-
based method thanks to the use of many semantics and their relation, excels in achieving
a more refined order of the arguments.

4 Properties

A ranking can be characterised by specific properties that consider how couples of ar-
guments in an AF are evaluated for establishing their position. We provide a list of the
properties inspired by [7] and [3] that our social ranking satisfies. We start by introduc-
ing two notions which are necessary to define our properties.
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Definition 6. An isomorphism f between two argumentation frameworks AF=〈A,R〉
and AF ′=〈A′,R′〉 is a bijective function f: A → A′ such that ∀a, b ∈ A, (a, b) ∈ R if
and only if (f(a),f(b)) ∈ R′.

Definition 7. A connected component in a graph is a subset of nodes of the graph in
which every pair of nodes is connected by a path (a sequence of nodes and edges) within
that component.

Abstraction [7]: The ranking on argumentsA is defined only on the basis of the attacks
between arguments, that is, it is preserved over isomorphisms of the framework.
Independence [7]: The ranking between two arguments a and b should be independent
of any argument that is neither connected to a nor to b.
Void-precedence [7]: A non-attacked argument is ranked strictly higher than any at-
tacked argument.
Self-contradiction [7]: A self-attacking argument is ranked strictly lower than any non
self-attacking argument.
Totality [7]: All pairs of arguments can be compared.

Proposition 1. The social ranking of arguments obtained by applying our method sat-
isfies: abstraction, independence, void-precedence, self-contradiction and totality.

Proof. – Abstraction: the ranking of arguments is defined only on the basis of the
attacks between arguments, that is it is preserved over isomorphisms of the frame-
work.

– Independence: the method we propose computes the ranking starting from the sets
of extensions of each semantic. Since the status (accepted or rejected) of each argu-
ment is determined by the other arguments in the same connected component, also
the ranking between every pair of arguments a and b is independent of any other
argument outside the connected component of a and b.

– Void-precedence: there are two cases of attacked argument. First, let us take an
argument b which is attacked, but defended by another (not attacked) argument a.
Then b will be in (a possibly stable extension) a preferred extension and complete
all the time with argument a, so a will have at least the same number for the first
3 components of the vector θ(a) of lexcel. However, contrary to argument a, the
argument b alone will not be in the admissible extension since it is attacked while
a will be, so lexcel will rank a higher.
Let us now turn to the second case, which is the case if the argument is not de-
fended, then it will be at the bottom of the ranking in conflict-free or in the rest. So
a non-attacked argument is ranked strictly higher than any attacked argument.

– Self-contradiction: self-attacking argument cannot be in any extension, so it will be
at the end of the coalition ranking and therefore at the end of the social ranking of
arguments.

Cardinality Precedence [7]: The greater the number of direct attackers for an argu-
ment, the weaker the rank of this argument.
Defence Precedence [7]: For two arguments with the same number of direct attackers,
a defended argument is ranked strictly higher than a non-defended argument.



Ranking of Arguments using Social Ranking Choice 9

Non-attacked Equivalence [7]: All the non-attacked arguments have the same rank.
Maximality [3]: If an argument is not attacked, then the argument is first in the ranking.
Symmetry [3]: ∀a, b ∈ A, if a and b have the same attackers , then a and b are at the
same rank.

Definition 8. The social ranking saying b � a is not coherent with the AF, if a attacks
b, otherwise it is coherent.

Neutrality [3]: ∀a, b ∈ A, if Att(b) = Att(a)
⋃
{x} such that x is not coherent with b,

then a and b have the same rank.
Monotony [3]: ∀a, b ∈ A, if Att(a) ⊆ Att(b), then a is ranked no lower than b.
Strict Monotony: ∀a, b ∈ A, if Att(a) ⊆ Att(b) and Def(b) ⊆ Def(a) then a is
ranked no lower than b.
Quality Precedence [7]: An argument a should be ranked strictly higher than an argu-
ment b, if at least one attacker of b is ranked strictly higher than any attacker of a.

Proposition 2. The social ranking of arguments obtained by applying our method does
not satisfy: cardinality precedence, defence precedence, non-attacked equivalence, sym-
metry, maximality, neutrality, monotony, strict monotony and quality precedence.

Proof. – Figure 4 is a counter-example for cardinality precedence because using
our method, the ranking over sets of arguments is (ace) w () w () w (ac ∼ ae ∼
ce ∼ a ∼ c) w b ∼ d....
By lexcel on this ranking, we have that e � b and e � d. However, e has a greater
number of direct attackers than b and d.

c d e b a

Fig. 4. Counter-example.

– Figure 5 is a counter-example for defence precedence because e and c have each
one attacker, e has no defender, c has one defender: a, but e � c.

– Figure 5 is a counter-example for non-attacked equivalence because f and d are
non attacked but f � d.

– Maximality is not satisfied since we do not have non-attacked equivalence (Figure
5 is a counter-example).

– Figure 6 is a counter-example for symmetry because c and b have the same attack-
ers: a but b � c.

– Neutrality is not satisfied since we do not have symmetry.
– Figure 3 is a counter-example formonotony becauseAtt(c) = a ⊆ Att(b) = a, d,

but b � c.
– Figure 3 is a counter-example for strict monotony becauseAtt(c) = a ⊆ Att(b) =
a, d and Def(b) = b ⊆ Def(c) = b, but b � c.

– Figure 7 is a counter-example for quality precedence because by lexcel we find
the social ranking: a � d � f � c � b � e. b is attacked by a with a ranked
strictly higher than any argument and so any attacker of e. But we have b � e.
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c b a f d e

Fig. 5. Counter-Example. The ranking of coalitions: (bdf) w () w () w (∅ ∼ f ∼ d ∼ df ∼
bf) w (∅ ∼ e ∼ c ∼ ce ∼ fe ∼ fc ∼ fce ∼ cd ∼ fcd ∼ b ∼ be ∼ fbe ∼ bd ∼ a ∼ ae ∼
ac) w rest.

c a b

Fig. 6. Counter-example. The ranking of coalitions: (bc ∼ a) w () w () w (∅ ∼ b) w c w rest.

d e f

c

b a

Fig. 7. Counter-example. The ranking of coalitions: (adf ∼ ac) w () w (a) w (∅ ∼ d ∼ df ∼
ad ∼ c) w (f ∼ b ∼ bf ∼ bd ∼ bdf ∼ af ∼ e ∼ be ∼ ae ∼ bc) w rest.

5 Related Work

Instead of just returning a set of extensions of an argumentation framework when we use
extension-based semantics, several approaches have been developed to give a more de-
tailed evaluation of arguments. The so-called ranking-based semantics
[6,7,5,10,4,17,18,9] aim to rank-order arguments according to their degree of accept-
ability using ranking functions (e.g., h-categoriser function [6]). The main problem is
that they do not allow to determine whether a set of arguments is jointly acceptable.
For example, even if two arguments have high degrees of acceptability, they may not be
jointly acceptable since they conflict.

Some authors have recently considered this question to overcome this problem.
In [14], the authors defined extension-ranking semantics, which is a generalisation of
extension-based semantics to determine whether a set of arguments is jointly acceptable
and also whether a set is more plausible than another set. For example, given two sets
of arguments E and E′, E is more plausible than E′ regarding conflict-freeness if E
has strictly less conflicts than E′ (w.r.t. set inclusion). Hence, an argument a is at least
as plausible as b if a is contained in E. In [19], the author discussed the relationship
between ranking-based and extension-ranking semantics and showed that these two se-
mantics can be transformed into each other. Namely, going from a ranking over argu-
ments to a ranking over sets of arguments and from a ranking over sets of arguments
to a ranking over arguments. In the same direction, the idea of combining ranking-
based semantics and extension-based semantics is studied in some propositions. Among
these approaches, the one proposed in [8] uses extension-based semantics to improve
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ranking-based semantics and vice versa. For example, they exploit the ranking of argu-
ments returned by a ranking function to select the best extensions for a given semantic.
The work proposed in [14] also allows rank-order the set of arguments based on the
semantics defined for ranking extensions. Other works following this idea can be found
in [20,19].

The ranking we presented in this paper is considered a social ranking problem since
it is based on social ranking techniques used in the computation of social choice [15,12].
The approach proposes to go from a ranking over sets of arguments to a ranking over
arguments. In our context, the ranking over sets of arguments is obtained from the inclu-
sion relationship between conflict-free, admissible, complete, preferred and stable se-
mantics. The methods cited here for ranking single arguments or over sets of arguments
are based on a single semantic. To the best of our knowledge, our method is unique in
that it considers several semantics by exploiting the inclusion relation between them.
This allows for a more detailed evaluation of arguments.

6 Conclusion

In this paper, we have presented a method to find a ranking of coalitions and a ranking
of arguments. Unlike other rankings based on semantics, we first defined the ranking of
coalitions and then used power indices to obtain a social ranking of arguments. Addi-
tionally, instead of relying on a single semantic, we used some of Dung’s main seman-
tics to achieve higher ranking precision and we analysed different properties. For future
work, we plan to study the last equivalence class that includes all the coalitions not ac-
cepted by any semantics. One possible line of investigation is to draw inspiration from
the proposal in [14] to rank these coalitions. Furthermore, to deepen the comparison of
our method with the existing ones, we aim to perform graph simulations and observe
the results obtained for the different techniques.

Acknowledgments. Amélie Leroy, Meltem Öztürk and Gabriella Pigozzi acknowledge financial
support from the project THEMIS ANR20-CE23-0018 of the French National Research Agency
(ANR).
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