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Abstract. Fuzzy Inference Systems (FIS) effectively model and reason
with complex and uncertain information in an interpretable, understand-
able, and transparent way. Takagi-Sugeno-Kang (TSK) is one of the most
widespread types of FIS, appreciated for its ability to output crisp values
by leveraging linear models as consequents. In this tribute to Prof. Sugeno,
we discuss our previous works based on TSK inference. In particular,
we focus on pyFUME, a Python library for automatically estimating
first-order TSK FIS from data. We introduce a relevant advancement
in pyFUME, i.e., the ability to handle categorical variables within the
consequents, which significantly enhances the model’s performance in
regression and classification tasks. This improved version completes the
foundation for pyFUME to handle mixed-type data. Our results on three
diverse datasets show the capabilities of our method, which performs
better than the previous implementation.
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1 Introduction

Professor Michio Sugeno is the primary creator of the Takagi-Sugeno-Kang (TSK
or Sugeno) method [24,25], and his work has revolutionized the use of fuzzy
logic in decision-making processes. The Sugeno method differs from other fuzzy
inference systems as it provides a well-defined framework by expressing rules
in the form of mathematical functions. This characteristic makes it particularly
suitable for various applications, including control systems, pattern recognition,
and decision support. Sugeno’s pioneering efforts have significantly advanced the
practical implementation of fuzzy logic by offering a versatile and effective tool
for handling uncertainty and non-linearity in real-world applications. Starting
from Sugeno’s work, we developed several tools and methods described hereafter.
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Dynamic fuzzy modeling is a knowledge-driven approach based on fuzzy logic
that allows for analyzing heterogeneous complex systems and carrying out dynam-
ical simulations of the temporal evolution of the system without requiring any
precise quantitative parameterization [15]. In a Dynamic Fuzzy Model (DFM),
linguistic variables and terms are associated with system components, providing
a qualitative description of potential states over time. Fuzzy rules, derived from
these linguistic elements, govern the behavior of DFMs, distinguishing between
inner and outer variables: the former can either appear as antecedent or as
consequent in fuzzy rules, while the latter represent input and output variables.
Specifically, input variables influence system dynamics, while output variables
represent observable components. The synchronous application of fuzzy rules,
employing the zero-order Sugeno method [24], drives the temporal evolution
of non-input variables. Simulation and analysis can be conducted through FU-
MOSO (FUzzy MOdels SimulatOr) [15,23], an open-source software allowing
user-specified settings for simulation time, variable states, and input functions.

An alternative knowledge-driven approach is Fuzzy-mechanistic modeling of
compleX systems (FuzzX), which is a general-purpose methodology for hybrid
modeling that couples the quantitative description and analysis of well-known
and detailed processes, along with other phenomena whose functioning is not well
characterized and can only be described using linguistic concepts [22]. Fuzzy rules
in FuzzX control variables or parameters of the mechanistic module, facilitating
the integration of precise and imprecise information to model emergent behaviors
accurately. In particular, FuzzX can overcome different limitations of other
hybrid modeling approaches, as it allows for dynamically integrating a detailed
quantitative model with a qualitative fuzzy rule base system by synchronizing
the qualitative and quantitative modules during the simulation thanks to the
variables, and parameters, working as an interface between the two modules. A
simulation step of a model defined with FuzzX is realized by calculating the
dynamics of the mechanistic module and followed by a fuzzy inference.

Finally, pyFUME [6] is a Python library for automatically estimating Fuzzy
Inference Systems (FISs) from data. pyFUME simplifies FIS creation from data,
offering flexibility for customization. Indeed, it supports various data processing
steps, including loading data from .csv -files, splitting it into training and testing
datasets, imputing missing values, and performing feature selection. Specifically,
feature selection can be performed using several approaches, such as sequential
forward selection or a more advanced approach based on a Fuzzy Self-Tuning
PSO (FST-PSO) [14]. The latter approach has the additional advantage of
optimizing the number of rules of the FIS. In addition, pyFUME also enables
data clustering using various methods, including a swarm intelligence method
based on FST-PSO, designed to reduce the risk of local minima entrapment
[4]. The antecedent sets and consequent parameters of a Sugeno FIS can be
estimated, and the model can be simplified using the Graph-Based Simplification
approach [5]. Finally, pyFUME can compute several evaluation metrics (e.g., the
Mean Absolute Percentage Error or MAPE), providing a comprehensive FIS
development and evaluation toolkit.
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In the context of Explainable Artificial Intelligence (XAI), the TSK method’s
ability to provide rule-based explanations for its decisions is essential for develop-
ing transparent and understandable AI systems. The European AI Act, which
will soon be enforced in all Member States, specifies that users should be able
to “correctly interpret the high-risk AI system’s output.” [8] This means that
the system should offer sufficient information for users to understand why a
particular output was produced.

The newly introduced article 86, called ”Right to explanation of individual
decision-making”, specifically says in paragraph 1 that ”Any affected person
subject to a decision which is taken by the deployer on the basis of the output
from a high-risk AI system [...], and which produces legal effects or similarly
significantly affects that person in a way that they consider to have an adverse
impact on their health, safety or fundamental rights shall have the right to obtain
from the deployer clear and meaningful explanations of the role of the AI system
in the decision-making procedure and the main elements of the decision taken.”
In crucial applications, such as medical devices, interpretable models are the
only way to ensure the respect of citizens’ fundamental rights [8,13]. As part
of the AI Act’s mandate of debiasing tests (Art. 10, data governance), TSK
represented the foundation for the development of FAnFAIR, a methodology
for the (semi)automatic assessment of potential biases in datasets affecting the
fairness of a derived AI system [9]. In this paper, we present an enhancement of
pyFUME, namely the integration of categorical variables in consequents, which
makes pyFUME more robust and versatile for addressing the inherent complexity
of mixed-type data sets. To assess the effectiveness of this new version, we
performed tests on three distinct datasets. The results show improved performance
compared to the previous version of pyFUME, confirming its potential as an
efficient and versatile tool for data-driven (interpretable) modeling.

2 Fuzzy modeling and the pyFUME project

Fuzzy Sets (FS) provide a mathematical framework to represent the vagueness
and uncertainty typical of real world concepts and variables [28]. In FS theory,
elements of the universe of discourse can simultaneously belong to more than one
set with different membership degrees, determined by the Membership Functions
(MF). A MF µ : U → [0, 1] maps each element of the universe of discourse U to
its corresponding membership value; the membership degree ranges from 0 (the
element does not belong to the set) to 1 (the element fully belongs to that set).
Fuzzy Inference Systems (FIS) built on top of FS provide a formal framework to
perform reasoning and take decisions by using a collection of if-then rules. Fuzzy
rules can be split into two parts:

1. antecedents, i.e., the part of the rule that describes the conditions under
which the rule applies;

2. consequents, i.e., the part of the rule that determines the system’s output.

Since the antecedents are expressed through fuzzy logic, each rule is associated
with a degree of satisfaction in [0, 1]. Conversely, the consequents can assume
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various forms and their impact on the overall output depends on the satisfaction
degree of the corresponding antecedent. FIS can be characterised according to
their consequents: when the output of rules involve fuzzy sets, it is called Mamdani
inference; when the output are functions, then it is called Takagi-Sugeno-Kang
(TSK) inference.

In order to simplify the development of FIS, multiple libraries have been
proposed for several languages, including MATLAB and R [26]. For Python, two
possible options are scikit-fuzzy and Simpful. The latter is a library designed
to provide a simple and lightweight API for the development of FIS based on
either Mamdani or Sugeno inference [20]. Simpful supports many features, can
parse complex fuzzy rules involving AND, OR, and NOT operators, and exploit
arbitrarily shaped FS. On top of Simpful, we developed pyFUME, a Python
library for the estimation of FIS based on (first-order) TSK inference [6]. The
functioning of pyFUME can be summarized as follows:

1. Data loading and splitting, these steps include optional normalization options,
data imputation, and feature selection.

2. Clustering, this step groups data in J clusters by means of an available
clustering algorithm (fuzzy c-means [2] (possibly paired with swarm intelli-
gence [4,21], Gustafson-Kessel clustering [10] or, for mixed datasets, fuzzy
c-prototypes [16]).

3. Antecedent estimation, this step generates the fuzzy sets and antecedents of
the rules based on the clustering. Every rule describes one cluster, and is
formed as follows:

Rj : IF (x1 is Aj1) and . . . and (xN is AjN )

THEN (OUTPUT is yj)

where, j = 1, . . . , J denotes the cluster and rule number, x = (x1, . . . , xN )
denotes the input vector, N is the number of input features (linguistic
variables), Aji is the fuzzy set for the ith linguistic variable with respect to
cluster j, and yj is the consequent function for rule Rj . The firing strengths
of the rules are also computed in this step for the training set. The firing
strength for rule Rj is: βj = min(µAj1

(x), . . . , µAjN
(x)), for j = 1, . . . , J,

where µAji
is the membership function for the fuzzy set of feature i and

cluster j. The estimation of the antecedent sets is performed by fitting the
convex envelope of such membership values, as described in [7].

4. Consequent estimation, this step generates the consequents, which can be
zero-order (yj = cj) or first-order (yj = a⊺

jx + bj) linear models [1]. The
overall output y∗ is computed as follows:

y∗ =

∑J
j=1 βjyj∑J
j=1 βj

.

The linear models are fit by considering the firing strengths as per [1].
5. Simpful model generation: the final step is the generation of the Simpful file

that contains the model.
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3 Handling categorical consequents in pyFUME

Regardless of the popularity of TSK, a few approaches using mixed datasets can
be found in the literature. One example is Liu et al. [12], where the authors use
a Firing-strength Transform Matrix to handle the categorical inputs. In [18], an
ensemble-based multistage scheme is applied: first, a logistic regression model
is used to transform the binary feature space into a numerical feature, then the
logistic regression output, together with the continuous variables, is used to train
a second stage of models consisting of an ensemble of two TIK models. In this
work, we propose a different strategy based on one-hot encoding.

To retain Simpful’s high level of flexibility and readability, we implemented a
novel refined syntax for crafting customized replacement rules within Simpful’s
output functions. This necessity arises due to the distinctive characteristic of
categorical variables, wherein the direct substitution of linguistic terms in the
consequent with their corresponding numerical values, as commonly executed
with continuous variables, is not feasible. Instead, a methodological construct
becomes necessary to substitute categorical linguistic terms with numerical
representations, mainly when the linguistic term falls within a specific category.
These new characteristics required a dedicated syntax, that is based on a novel
replacement pattern in the consequent that is structured as follows:

{ IF variable IS category THEN value }
This part of the rule is replaced at runtime with value if the variable cor-
responds to the specific category; otherwise, it is replaced by a 0.Thanks to
this syntax, we could implement one hot encoding – often employed in machine
learning to bridge the gap between qualitative and quantitative data – in the
consequents. The approach consists of adding a dummy feature for each pos-
sible value of the categorical variable: the ith new dummy feature will have a
value 1 if the data point of that row belongs to the ith possible category, and 0
otherwise. Thanks to this approach, pyFUME can process categorical variables
when creating first-order Sugeno models. In particular, it is now possible to pass
the categorical indices argument to the pyFUME methods, which intuitively
contains the list of indices/columns of categorical variables to treat them ac-
cordingly. The library then takes care of creating the parameters matrix, which
contains, in the ith row, the parameters of the ith linear model (output function),
and the Simpful model, which exploits the new syntax.
Here is an example of the procedure to generate the one-hot encoding matrix,
the first matrix is the design matrix where both of the variables are categorical:

var1 var2
0 0
2 0
1 1
2 0

 Replace with
===========⇒
dummy variables


1 0 0 1 0
0 0 1 1 0
0 1 0 0 1
0 0 1 1 0

 Remove redundant
============⇒

columns


1 0 1
0 0 1
0 1 0
0 0 1


Starting from the one-hot encoding matrix, the consequent takes the form:
{ IF var1 is 0 THEN o1 } + { IF var1 is 1 THEN o2 } + { IF var2 is 0 THEN

o4 }, where oj is the coefficient computed by pyFUME.
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4 Results

We tested the improved version of pyFUME described in the previous Section
(called Mixed, in what follows, which makes use of Simpful version 2.12.0 and
pyFUME version 0.3.4) against the previous version (called Continuous, in what
follows, which makes use of Simpful version 2.11.1 and pyFUME 0.2.25) and a
simple baseline alternative approach (called Baseline). The comparison is carried
out by measuring the performance of the models obtained using three different
publicly available datasets: a 10-fold cross-validation with a Wilcoxon test to
assess statistically significant differences computed on either the MAPE or the
F1-score. These datasets pertain to data collected for different contexts, i.e.,
healthcare, transportation, and insurance companies.

The first dataset is the Medical insurance charge prediction7 (1338 instances),
which contains a mixed set of attributes about patients (2 continuous and 4
categorical); the regression task regards the prediction of the amount of the
medical insurance bill after a visit to the hospital. The second well-known dataset
is the Auto-MPG8 (392 instances), in which the explanatory variables are the
characteristics of car models and their engines (4 continuous and 3 categorical);
the regression task regards the miles-per-gallon of the cars. The third dataset
is the Pediatric appendicitis9 (780 instances), which contains a list of pediatric
patients admitted to the hospital with abdominal pain. It is a classification task
with the objective of predicting whether the patient has appendicitis or not,
using fourteen features encompassing laboratory tests, physical examinations,
and clinical scores (6 continuous and 8 categorical).

Table 1. Results summary

# clusters Mixed Continuous Baseline Mixed Continuous Baseline
MAPE R2

Insurance 4 0.321 0.705 0.426 0.797 0.564 0.739
Auto 2 0.086 0.125 0.100 0.867 0.735 0.847

F1 Accuracy

Appendicitis 2 0.856 0.769 0.850 0.821 0.727 0.820

For the first two datasets, we compute the MAPE and R2 scores to measure
the performance of three tested approaches in tackling the regression task. For the
third dataset, the performance related to the binary classification task is assessed
by computing the F1-score and accuracy. It is worth noting that pyFUME exploits
a linear model for the classification task, applying a threshold of 0.5 to the output.
The baseline models used in the comparison are a Linear Regression model for
the regression tasks and a Logistic Regression model for binary classification,
from Scikit-learn [17] (version 1.3.2) with the default parameters. Both models
make use of categorical (nominal) features via one-hot encoding. The number of

7
https://www.kaggle.com/datasets/niranjanank/medical-insurance-charge-prediction

8
https://www.kaggle.com/datasets/uciml/autompg-dataset

9
https://www.kaggle.com/datasets/joebeachcapital/regensburg-pediatric-appendicitis

https://www.kaggle.com/datasets/niranjanank/medical-insurance-charge-prediction
https://www.kaggle.com/datasets/uciml/autompg-dataset
https://www.kaggle.com/datasets/joebeachcapital/regensburg-pediatric-appendicitis
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clusters leveraged by pyFUME was chosen based on Xie-Beni validity criterion [27].
Although normalization often improves model performance [3], we experimentally
verified that, with the datasets considered in this paper, the difference was not
substantial (data not shown).
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Fig. 1. Plot of the antecedents for the Insurance dataset.

All fuzzy set plots in this paper were generated using Simpful’s functionalities
[6,16]. Figures 1, 3, 5 represent the antecedents and show the fuzzy sets for each
linguistic variable. The categorical variables are represented as bar plots, where
each colored group refers to a specific cluster, and each bar hatch represents
a different category, while the height of the bar represents the corresponding
MF [16]. The bar plots in Figures 2, 4, 6 denote the variables’ influence on the
prediction. They are based on the parameters of the linear regression models of
the consequents, normalized as b′i = bi

maxXi−minXi

maxy−miny , where bi is the parameter

in the model, Xi is the ith column in the training dataset, and y is the target
variable vector.

Insurance. Table 1 reports the performance of the three tested approaches in
terms of MAPE and R2 score, showing that the Mixed approach outperformed
the other models (both p-values < 0.01). Regarding the four clusters reported in
Figure 1, we observe that some have very specific characteristics that identify
well-defined sub-populations. For instance, Cluster 4 identifies the sub-population
of obese and severely obese people, most of whom are smokers. Considering
the consequents (Figure 2), we note that ‘BMI’ (body mass index) is the most
important variable having the highest impact on the amount of the bill and that
Age is also positively correlated. These results reflect our expectations for this
group, for excessive weight is likely to yield medical issues, thus higher medical
bills. This is not necessarily the case for other groups, e.g., Cluster 1 and 3,
where ‘smoking’ is the most influential variable. Finally, Cluster 2 is composed
of non-smokers around 30: here ‘age’ is the most relevant variable.
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Fig. 2. Plot of the consequents for the Insurance dataset.

Auto. Also for this dataset, the Mixed approach outperforms the others (both
p-values < 0.01) as reported in Table 1. The two clusters highlighted in Figure 3
are remarkably distinct; Cluster 1 contains more powerful (higher cylinder count,
higher horsepower) but heavier cars, which have a slightly lower acceleration, while
Cluster 2 contains less powerful and lighter cars. Another important distinction is
the country of origin: the powerful cars are mainly from the US, while the others
are mainly European and Asian cars. Focusing on the consequents in Figure 4,
we observe that the most important variables are the year-related categories;
indeed, newer vehicles are positively correlated with MPG, while older vehicles are
negatively correlated with MPG. The intercept of the linear regression for Cluster
1—which is the mean output response of the rule when all the features are equal
to 0—is 28 MPG, relatively low, but expected in the case of very powerful cars
characterized by inefficient engines. For Cluster 2 the bias is 60 MPG, which
indicates a very efficient vehicle.

Pediatric appendicitis. For this dataset, the performance of the Mixed approach is
better than the Continuous (p-value < 0.01) and similar to the Baseline (p-value
> 0.7) (see Table 1). Figure 5 shows that Cluster 1 includes people with an
overall poor health condition: high temperature, nausea, loss of appetite, and
possible ongoing infection (denoted by high WBC count and CRP level). The
consequents (Figure 6) are very similar; the difference regards the intercept of
linear regression. For Cluster 1, the intercept is 0.59, suggesting that the patients
who strongly activate this rule will tend to have appendicitis; for Cluster 2, it is
0.25, suggesting the opposite.
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Fig. 4. Plot of the consequents for the Auto dataset.

5 Conclusion

In this tribute to Prof. Michio Sugeno and his work on fuzzy inference systems,
we summarized the authors’ past and ongoing works that were built on top
of Sugeno’s work, especially with the pyFUME library, which automatically
estimates TSK FIS from data. The use of TSK FIS, instead of more frequently
used machine learning approaches (such as neural networks), allows for a higher
degree of interpretability of the model, a key characteristic for applications that
operate in critical domains. Indeed, as demanded by the AI Act, it is fundamental
to use systems able to offer sufficient information on the output provided in
high-risk domains. In this context, we extended pyFUME to effectively leverage
categorical variables not only during the clustering step and construction of FS
but also in the consequents, paving the way for the applicability of pyFUME to
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Fig. 5. Plot of the antecedents for the Appendicitis dataset.

any kind of datasets.The novel version of pyFUME was tested on three different
mixed datasets and compared against the continuous version of pyFUME and
baseline models. The results show that the mixed version of pyFUME outperforms
the continuous version on all three datasets, while it outperforms the baseline
model on both regression tasks and competes on the classification task. In
addition, we showed how, thanks to the visualization of the fuzzy sets and the
graphical representation of the linear regression coefficients, it is possible to grasp
information regarding the model decision process, a key step to instill trust in
models leveraged in high-risk scenarios.

In the future, we aim to apply pyFUME to large and high-risk datasets in
collaboration with domain experts in order to further improve the interpretability
for specific applications. Moreover, we will develop additional features to reduce
the model’s complexity, including the removal of features or fuzzy sets that do
not bring useful information (using approaches similar to [11] and [19]). So doing,
pyFUME would enable non-AI expert practitioners to estimate FIS automatically
from data in Python, providing a friendly and extensible library that can be
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Fig. 6. Plot of the consequents for the Appendicitis dataset.

used out-of-the-box. In all new versions of pyFUME, categorical consequents are
available and automatically enabled for all the categorical features specified.
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