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Abstract. This paper introduces WECM, a novel evidential and sub-
space clustering algorithm. It is based on the Evidential c-means, a vari-
ant of the k-means designed to produce a credal partition, allowing a
better representation of the partial knowledge regarding the class mem-
bership of objects. The WECM algorithm integrates weights on features
and clusters to enhance the clustering separability and interpretability.
Experiments conducted on synthetic and real data show the positive
effects of the weights on the clustering performances.
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1 Introduction

Clustering is an unsupervised learning approach of machine learning, used in
various fields such as medicine [4], computer vision [25], IoT [18], etc. to unveil
hidden patterns within datasets. The primary objective of clustering algorithms
is to create groups of objects, ensuring that the similarity among elements in a
group surpasses the similarity between different groups. There exists three cate-
gories of clustering: the hierarchical clustering, the density-based clustering, and
the prototype-based clustering [23]. The prototype-based algorithms are widely
used because of their simple computation, easy interpretation, and their clearly
defined objective function that they strive to optimize. Among prototype-based
algorithms, the most famous algorithm is the k-means algorithm. It generates
a hard partition which assign objects to exactly a single cluster. In many real-
world cases, however, clusters are overlapping, and the objects in these between-
clusters areas are uncertain to belong to a specific cluster. Under such scenarios,
the hard-partitioning of k-means forces a crisp assignment that can lead to poor
performance. For this reason, variants of k-means creating soft partitions have
been proposed. Based on the concept of partial membership described in the
fuzzy sets theory [29], the fuzzy c-means (FCM) algorithm [2] generates a fuzzy
partition where each object has a degree of membership to each cluster. Pos-
sibilistic extensions of k-means [15, 20] have been introduced to better manage
noise and outliers. The Evidential C-means (ECM) [17] treats overlapping re-
gions between clusters as new clusters and take advantages of the belief function
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theory to express the membership value of each object with respect to all clus-
ters. The outcome of ECM is a credal partition, considered to express in a richer
way the partial knowledge concerning the assignment of an object to a cluster.
Indeed, this credal partition can be converted into hard, fuzzy, or possibilistic
partitions through the use of transformation functions.

For above-mentioned algorithms and their variants, the assumption is made
that all features of a given dataset contribute equally to the construction of
optimal clusters. However, in some cases, some features may hold greater signif-
icance in providing clustering information than others. Consequently, features
with higher relevance play a more crucial role in achieving the optimal clus-
tering outcome compared to those with lower relevance. By identifying and
assessing these relevant features through clustering algorithms, improvements
in accuracy and computational efficiency can be achieved. Several approaches
have been developed for this purpose. First methods include soft clustering al-
gorithms using Mahalanobis distances [9, 10, 19, 16]. This distance, adapted for
each cluster, enables the representation of importance and correlations among
features. However, defining both importance and correlations adds complexity
in the minimization process, occasionally leading to inconclusive results, espe-
cially with challenging or large datasets. The feature-weighting techniques, also
referred to as subspace clustering techniques, propose optimizing the weights
within objective function simultaneously with the partition [7]. There exists two
types of method: the global method assigns the same weight vector to all clusters
[13, 26], while the local method involves assigning a different weight vector to
each cluster [8, 14, 21, 11, 28]. Subspace clustering makes the assumption of inde-
pendence among the attributes of a dataset. It is commonly used with Euclidean
distance and allows good interpretability of the results.

As we are aware, there is limited existing research on feature-weighted ECM
in the literature. This study specifically concentrates on incorporating feature-
weights into ECM. The new algorithm, termed feature-weighted ECM (WECM),
automatically calculates feature weights for different features and generates a
credal partition. The remainder of this paper is organized as follows. Section
2 recalls some backgrounds related to ECM clustering algorithm. Section 3 is
our proposed approach feature-weighting ECM algorithm. The experiments and
results are given in Section 4, and finally Section 5 is our conclusion for this
research.

2 Background

2.1 Belief function theory

The belief function theory [24] is a mathematical framework that enables the
representation of uncertain and imprecise information. Let us consider Ω =
{ω1, . . . ωc} a finite set of events and ω the true event occurring in the context
of a system. The basic belief assignment (bba) m : 2Ω → [0, 1] quantifies the
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partial knowledge regarding the event ω. It satisfies:∑
A⊆Ω

m(A) = 1.

Subsets A ⊆ Ω such that m(A) > 0 are called focal sets. The bbas have var-
ious interpretations following their distributions. If the focal sets are all single-
tons, m is a Bayesian bba. If only one singleton holds all the belief, i.e. m(ω) = 1,
then the bba expresses a full certainty. Inversely, m(Ω) = 1 corresponds to a to-
tal ignorance of the real value of ω. Eventually, when m(∅) = 0, the bba is said
to be normal. Inversely, m(∅) > 0 raises the possibility that the event ω does
not belong to the frame of discernment Ω.

There exists various transformations of a mass function in order to obtain
a probability distribution, a possibility distribution, or to make a crisp decision
regarding the actual value of ω. The pignistic transformation converts a normal
bba m into a probability distribution:

BetP (ω) =
∑
ω∈A

m(A)

|A|
,

where |A| denotes the cardinality of A ⊆ Ω. In case of a subnormal bba, a
normalization can be achieved by dividing 1 − m(∅) among the elements of A
[27].

2.2 Evidential c-means

The Evidential c-means clustering algorithm (ECM) is an adaptation of the
traditional k-means in the framework of belief function theory. It provides a
credal partition, an informative partition where each subset of clusters Aj ⊆ Ω
is associated with a belief mass function. This function indicates the degree of
belief that each object belongs to a cluster included Aj . This representation
enables to express various situations, ranging from complete ignorance to total
certainty.

Let X = (xi) = (xip) ∈ Rn×q be the set of n objects characterized by q
attributes, Ω = {ω1, . . . , ωc} be the clusters, V = (vk) = (vkp) ∈ Rc×q be the
centroids of the c clusters, and M = (mij) ∈ Rn×2c be the credal partition.
Similarly to k-means, ECM involves the use of centroids to represent clusters.
Then, each subset Aj is associated with a centroid vj , which is computed as the
center of mass of the prototypes associated with the classes comprising Aj . The
Euclidean distance is finally employed to measure the dissimilarity between an
object xi and the centroid vj . Since no centroid can be defined to the empty set,
a fixed distance δ is incorporated, similarly to the noise-clustering algorithm [6].

The ECM algorithm searches to minimize the intra-cluster distances with
respect to the centroids V and the credal partition M :

JECM (M ,V ) =

n∑
i=1

∑
{j/Aj ̸=∅,Aj⊆Ω}

|Aj |αmβ
ijd

2
ij +

n∑
i=1

mβ
i∅δ

2,
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such that ∑
{j/Aj⊆Ω}

mij =1 ∀i ∈ {1, . . . , n}, (1)

mij ≥0 ∀i ∈ {1, . . . , n},∀Aj ⊆ Ω, (2)

where α and β are exponents controlling the imprecision and the fuzziness of
the credal partition, mi∅ refers to the mass of xi given to the empty set, and dij
corresponds to the Euclidean distance between the object xi and the centroid
vj .

2.3 Soft subspace clustering with local weights

Several soft subspace clustering algorithms using locally feature weights have
been proposed. In this framework, the weights are introduced for each clusters
considering a weighted squared Euclidean distance. This distance is defined as
follows:

d2ik =

q∑
p=1

ws
kp(xip − vkp)

2, ∀i = {1, . . . , n},∀k ∈ {1, . . . , c}, (3)

where wkp ∈ [0, 1] denotes the weight of the cluster k for the feature p, s > 1 is
an hyper-parameter that controls the fuzziness of the weight. The weights W =
(wkp) ∈ Rc×q can then be adjusted through the optimization of an objective
function.

Most of the methods are extensions of FCM [8, 14, 21, 11]. Variations between
fuzzy subspace clustering include the introduction of a weight entropy [14] or
the consideration of both feature weighting and cluster weighting [11]. Recently,
few extensions have also been proposed for the possibilistic c-means algorithms
PFCM [22] and PCM [28]. It shows the interest of the community for algorithms
generating various types of partial knowledge. In this vein, we propose to extend
the ECM algorithm to handle local weights.

3 Locally weighted Evidential c-means

3.1 Objective function

Similarly to soft subspace clustering, we define weightsW = (wkp) for all clusters
and features. Then, we characterize the weights of subsets Aj as the average of
the weights of clusters included in Aj :

wjp ≜
1

|Aj |
∑

ωk∈Aj

wkp, ∀p = {1, . . . , q},∀Aj ⊆ Ω. (4)

The squared Euclidean distance between an object xi and a subset Aj is
then calculated using the weights and the centroid associated to the subset. The



WECM: an evidential subspace clustering algorithm 5

objective function of the subspace evidential c-means, referred to as weighted
evidential c-means (WECM) is as follows:

JWECM (M ,V ,W ) =

n∑
i=1

∑
Aj ̸=∅,Aj⊆Ω

|Aj |αmβ
ij

q∑
p=1

w2
jp(xip−vjp)

2+

n∑
i=1

mβ
i∅δ

2, (5)

such that constraints (1), (2) on masses are respected, and

q∑
p=1

wkp =1, ∀ωk ∈ Ω, ∀i ∈ {1, . . . , n}, (6)

wkp ≥0 ∀ωk ∈ Ω, ∀p ∈ {1, . . . q}. (7)

Similarly to the centroids, only weights associated to cluster has to be op-
timized using the objective function. It is trivial to show that constraints on
weights regarding subsets |Aj | > 1 are equivalent to constraints regarding weights
on clusters:

Proposition 1 (Constraints on weights). The weights wjp∀Aj ⊆ Ω respect
the positivity constraint and

q∑
p=1

wjp = 1, ∀Aj ⊆ Ω, |Aj | > 1,∀i ∈ {1, . . . , n}. (8)

Proof. Since the weights wjp ∀Aj ⊆ Ω are defined as the mean of cluster weights
(4) and all cluster weights are positive (7), then wjp ≥ 0 ∀Aj ⊆ Ω. For the sum
constraint, let us develop (4) in the sum of the weights:

q∑
p=1

wjp =

q∑
p=1

 1

|Aj |
∑

ωk∈Aj

wkp

 ,

=
1

|Aj |
∑

ωk∈Aj

q∑
p=1

wkp. (9)

Integrating constraint (1) in (9) gives then (8).

3.2 Optimization

The optimization of WECM involves iteratively optimizing the cluster centroids
V , the credal partitionM , and the cluster weightsW until convergence. The two
first steps result to similar update than ECM [17], except a squared Euclidean
distance is used with fixed weights. The update of W , implying to fix M and V
in the objective function, is obtained using the projected gradient method [5].

First, the derivative of JWECM with respect to wk′p′ is computed :
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∂JWECM

∂wk′p′
=

n∑
i=1

∑
{j/Aj⊆Ω,
Aj∩ωk′ ̸=∅}

|Aj |α−2mβ
ij

2wk′p′ + 2
∑

ωk∈Aj

ωk ̸=ωk′

wkp′

 (xip′ − vjp′)2.

Let ∇J1(W ) = (∂JWECM

∂wk′p′
) be the matrix Rc×q containing the derivatives

∀k′ ∈ {1 . . . c} and ∀p′ ∈ {1 . . . q}. Constraint
q∑

p=1
wjp = 1 can be rewritten as

eTwk = 1 where e⊤ = [1 1 · · · 1] is a q × 1 vector. To keep the wk inside the set
defined by the above constraint, during the descent process, we project ∇J1(W )
onto the kernel of the linear subspace defined by the constraint. The projection
matrix is

P = I− 1

||e||2
eeT = I− 1

q
eeT .

Since e⊤e = q, I is the identity matrix. The projection matrix P = (pij) is

pij =

1− 1
q if i = j

− 1
q otherwise.

The projected gradient iteration is as follows

w
(l+1)
k ← w

(l)
k − γP (∇J1(W (l)))k, (10)

where γ is a small positive number (e.g. 0.001 − 0.01). We repeatedly update
the value of weight and value of J1(W ) until reaching stopping condition, if
∥ P∇J1(W l) ∥ becomes sufficiently small.

4 Results analysis

4.1 Experimental protocol

The WECM algorithm was evaluated using two synthetic data sets and five data
sets from the UCI machine learning1. The synthetic data sets, named Toys2D
and Toys6D, are composed of points generated from two multivariate Gaussian
distributions. Figure 1 presents the Toys2D data set.

The Toys6D data set has a multivariate Gaussian distribution for its two
classes. The first distribution is defined with µ1 = [1, 1, 1, 1, 1, 1] and Σ1 =
[1, 8, 3, 7, 9, 4] × I, where I represents the identity matrix, whereas the sec-
ond distribution is characterized by µ2 = [4.5, 4.5, 4.5, 4.5, 4.5, 4.5] and Σ2 =
[9, 2, 10, 3, 1, 8]× I.

The characteristics of the data sets are illustrated Table 1. Remark that the
LettersIJL corresponds to letters data set, where only the three letters {I,J,L}
has been selected [3].

1 https://archive.ics.uci.edu
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Fig. 1. Toys2D data set.

Table 1. Characteristics of the data sets.

n p c

Toys2D 200 2 2
Toys6D 400 6 2
Iris 150 4 3

LettersIJL 227 16 3
Lung 32 56 3
Seeds 210 6 3
Wine 178 13 3

We set the hyperparameters α = 1, β = 2, and δ = 100, as is commonly
performed by default [16, 1].

To measure the performance of our algorithm, we choose internal and external
evaluation criteria. The internal evaluation criteria is the non-specificity. It mea-
sures how uncertain is the credal partition obtained: N(M) = 1

n

∑n
i=1 N(mi),

with

N(mi) =
∑

Aj⊆Ω

mi(Aj) log2(|Aj |) +mi∅ log2(|Ω|).

The Adjusted Rand Index (ARI) [12] is an external measure used to evalu-
ate the similarity between two crisp clustering partitions, considering both the
agreement and disagreement of cluster assignments. The ARI is equal to 1 (re-
spectively 0) when there exists a total concordance (respectively a total dis-
similarity). In order to compute the ARI, the credal partition of the evidential
clustering is first transformed into a hard partition using the maximal pignistic
transformation. The second partition corresponds to the true labels available of
the data sets.

Centroids are randomly initialized for both ECM andWECM, and the weights
in WECM are initialized to 1/q, in order to start the algorithm with a balance
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between features. We run 10 trials of each clustering algorithm and then we
select the solution having the lowest objective function.

4.2 Performance of WECM

The interest of WECM compared to other soft subspace clustering is its ability
to produce a credal partition. Figure 2 presents the hard credal partition, which
assigns each object to the subset of classes with the highest mass, for (a) ECM
and (b) WECM. It shows that there exists an imprecise area where making a
decision without further prior knowledge might be harzardous. With WECM,
this imprecise area is smaller, and its center is slightly shifted upwards compared
to ECM, owing to the different weights assigned to the two features.

(a) (b)

Fig. 2. Credal partition obtained by (a) ECM and (b) WECM on Toys2D. Hard credal
partition is represented by the symbols and colors, and the mass values are represented
by contours.

Table 2 summarizes the results obtained using ECM andWECM. As it can be
observed, the WECM algorithm achieves better partitions for four data sets and
comparable results for one other data set. However, it yields lower performance
for the Iris and Seeds data set, suggesting that the data may not naturally exhibit
clear subspaces. Finally, it can be noticed that most of the time, Non-Specificity
and ARI are correlated although it is not a general rule.

For the Toys data sets, it is possible to visualize the weights obtained with
respect to the variances of the multivariate distributions (cf. Figure 3). As ex-
pected, in the case of good performance of the algorithm, there exists a nega-
tive correlation between weights and variances. Indeed, a low variance implies a
denser area, increasing the chance of separating clusters.
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Table 2. ARI and Non specificity for ECM and WECM

ARI N
ECM WECM ECM WECM

Toys2D 0.85 0.90 0.87 0.70
Toys6D 0.84 0.90 0.99 0.86
Iris 0.60 0.43 1.5 1.67

LettersIJL 0.18 0.21 1.43 1.37
Lung 0.14 0.21 1.45 1.45
Seeds 0.68 0.47 1.26 0.73
Wine 0.83 0.82 1.38 1.38

Fig. 3. Toys6D variances again the weights obtained by WECM.

5 Conclusion

In this paper, we proposed WECM, a new subspace clustering algorithm capable
of generating a credal partition. The weights optimized by the algorithm allow to
effectively handle the varying importance across the dimensions of a data set, and
enhances the interpretability of clustering results. By integrating the principles of
belief function theory into the clustering process, this algorithm enables the rich
representation partial information regarding the class membership of an object.
Preliminary results show that WECM can outperform the ECM algorithm for
some data sets.

In the future, several validation studies and upgrades can be undertaken. This
includes investigating the influence of the parameters α and β on WECM com-
pared to ECM, as well as specific optimizations for updating ECM with respect
to the weights. The definition of centroids for subsets with cardinalities higher
than one can also be modified to better locate the imprecise regions. Finally, the
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goal is to apply the method to a medical application, enabling experts to observe
both the imprecision between groups and the importance of the features.
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