
How to efficiently decombine belief functions?

Daira Pinto Prieto1, Ronald de Haan1, and Sebastien Destercke2

1 Institute for Logic, Language and Computation, University of Amsterdam
{d.pintoprieto,r.dehaan}@uva.nl

2 Université de Technologie de Compiègne, CNRS, Heudiasyc
sebastien.destercke@hds.utc.fr

Abstract. Decombination is a useful operator in settings where one has
to forget or retract previously given information. A typical case where
this happens is when some inconsistency between information sources
is observed, where removing potentially conflicting and unreliable infor-
mation can restore consistency. Other cases where the removal operator
is useful include inferences in graphical models and valuation-based sys-
tems, where the decombination operator is routinely used. In each case,
repeated decombinations of different pieces of information has to be per-
formed, which is conflicting with the fact that, in belief function theory,
such an operator is computationally very costly. In this paper, we show
that the decombination operation can actually be performed efficiently,
at least as long as the number of focal elements remains limited.

Keywords: Information fusion · Belief functions · Decombination · Al-
gorithm

1 Introduction

Belief functions are a generic language to model and reason with uncertainty,
extending both set and probabilistic representations in a unifying framework.
As such, belief functions offer a quite expressive language allowing to express
uncertainties arising from variability and/or imprecision. It does so by assigning
masses of beliefs not only to singletons, but also to subsets of a state space X .

One caveat of this higher expressiveness is that many operations become
computationally costly, limiting their applicability. Since the maximal size of the
representations increases exponentially with the size of X , a naive application of
common operators quickly leads to intractable computations. This is why many
works strive to simplify the complexity of operators such as fusion rules [2],
computations of belief degrees [11], or inferences in graphical models [15].

One operator that has benefited from less attention, at least from a com-
putational perspective, is the so-called decombination operator [17], where an
element of evidence given as a mass function is removed from a global corpus,
itself given as a mass function. Indeed, while some works deal with their exis-
tence [10] or with approximated decombinations [19], none deals with complexity
issues of exact decombination. Such decomposition operators have been used, for

example, in non-monotonic reasoning [8], graphical models [14], or more recently
the modelling of prejudices [6].

The goal of this paper is to partly fill this gap by investigating the complex-
ity of the decombination operator in specific yet practically relevant situations.
More precisely, we will assume that the evidence to retract from the available
evidence was one of the pieces of evidence previously combined, therefore ensur-
ing that the decombination operator will result in a standard mass function with
positive weights (which is not ensured in the general case [17]). In such a case,
we show that while a naive application of the decombination operator leads to
exponential complexity, it can also be expressed in a way that sometimes leads
to polynomial complexity in the number of focal elements, thereby offering a
significant computational gain.

Section 2 gives the necessary basics. Section 3 provides the main results in
this paper and presents, when possible, efficient approaches to perform decom-
bination. Section 4 provides a small illustrative use case.

2 Reminders on belief functions and decombination

Belief functions are uncertainty models that generalize both classical probabili-
ties and sets, providing one of the simplest common umbrella for both theories.
As a model of uncertainty, belief functions have first emerged from statistical
considerations [1], but their use extends to decision theory [7] or machine learn-
ing [3], to cite a few fields.

Let X be a state space, i.e., a set of elements that may form part of our
observations. The basic building block to model these observations in the belief
function framework is a positive mass function m : 2X → [0, 1] defined on the
power set of X and that sums up to one, i.e.,

∑
A⊆X m(A) = 1. Given a subset

A ⊆ X and a mass function m such that m(A) > 0, the value m(A) represents
the degree of certainty of having observed A. From this mass function various
uncertainty measures can be derived, the main ones being the belief, plausibility
and commonality functions, respectively defined for any event B ⊆ X as

belm(B) =
∑
A⊆B

m(A); plaum(B) =
∑

A∩B ̸=∅

m(A); qm(B) =
∑
B⊆C

m(C). (1)

The belief and plausibility measures have a rather direct logical interpre-
tation: bel(B) measures how much B is implied, or follows from the available
evidence, as it sums up the weights of events that imply B; while plau(B) mea-
sures how much B is consistent with our information, as it sums up the weight
of events that do not contradict B. On the other hand, commonality is harder
to interpret, but could be considered as how common, or how unsurprising, B is.
It also plays a very important role in the problem we will consider in this paper.

For easiness, we will also assume that all combined masses are non-dogmatic,
i.e., that the mass m(X) > 0 (our results still hold if we assume it only for the
mass to be decombined). Note that while this is theoretically restrictive, this is

2

practically not that restrictive and also relevant, as it ensures that plau({ω}) > 0
for any ω ∈ X , meaning that all possible observations are plausible to some
degree.

When having several mass functions, the belief function framework pro-
vides several ways to merge them and get a combined mass function. The most
renowned one is the combination method known as normalized Dempster’s rule
of combination [13]. Given two mass functions m1 and m2, and a set A ⊆ X ,
this rule can be applied to get their combination m = m1 ⊕K m2 as follows:

(m1 ⊕K m2)(A) =


0 if A = ∅,
1
K

∑
B∩C=A

m1(B) ·m2(C) otherwise (2)

where

K =
∑

B∩C ̸=∅

m1(B) ·m2(C). (3)

Another well-known combination rule of this framework is the unnormalized
Dempster’s rule of combination [18]. In this case, given two mass functions m1

and m2, their combination m = m1 ⊕ m2 will be computed following Equa-
tion (4).

(m1 ⊕m2)(A) =
∑

B∩C=A

m1(B) ·m2(C). (4)

As it is observed, the main difference between Equation (2) and Equation (4)
is the lack of a normalization factor. This allows the mass functions obtained by
the unnormalized Dempster’s rule of combination to give some positive value to
the empty set while satisfying

∑
A⊆X m(A) = 1. The mass m(∅) can then be

interpreted as an estimation of the amount of conflict [4].
Once we obtain a combined mass function by any of the previous methods,

we can use Equation (1) to get the correspondent functions. However, the com-
monality function associated with both m1⊕Km2 and m1⊕m2 can be computed
directly from m1 and m2 (Equation (5) and Equation (6) respectively).

qm⊕K
(A) =

1

K
· qm1

(A) · qm2
(A) (5)

where K is given by Equation (3)3. In the unnormalised case, we have

qm⊕(A) = qm1(A) · qm2(A). (6)

From the commonality function of a mass function m, we can compute the
belief function of m (Equation (7)) and also the mass function m (Equation (8)).
Plausibility is easily computed from belief, since plau(B) = 1− bel(X \B).

3 Note that K can be expressed using commonalities, using Equation (10) below.

3

belm(A) =
∑

B⊆X\A

(−1)|B| · qm(B) (7)

m(A) =
∑
A⊆B

(−1)|B−A| · qm(B) (8)

Therefore, mass functions and commonality functions are equivalent repre-
sentations in this framework. Although the interpretation of commonality func-
tions is less straightforward, they can be used to define a decombination operator.

Definition 1 (Decombination operator (a.k.a. removal operator [14])).
Given a set of possible states X , two mass functions m1 and m2, and the com-
bination of them m = m1 ⊕ m2, the decombination operator ⊖ is defined as
follows:

q(m⊖m2)(A) =
qm(A)

qm2
(A)

(9)

Or equivalently,

(m⊖m2)(A) =
∑
A⊆B

(−1)|B−A| · qm(B)

qm2(B)
(10)

Multiplying Equation (9) and Equation (10) by K, we get the decombination
operator for the normalized Dempster’s rule of combination.

Another well-established variation of the normalized Dempster’s rule of com-
bination is the disjunctive rule of combination [16]. While the normalized and
unnormalized Dempster’s rules of combination assume that every source of evi-
dence is reliable, the disjunctive rule of combination only assumes that at least
one of the sources is reliable. To capture this notion, this rule takes into account
the union of focal elements instead of the intersection:

(m1 ⃝∪ m2)(A) =
∑

B∪C=A

m1(B) ·m2(C) (11)

In [2], a decombination operator for the disjunctive rule of combination is
presented. However, it considers stronger assumptions than ours, as it is defined
for m2 such that belm2

(A) > 0 for every A, including the empty set.

Being able to forget or regret information is key for an evidence model, and
for reasoning in the presence of inconsistency in general. The decombination
operator brings this feature to the belief function framework. However, in spite
of its mathematical simplicity, Definition 1 cannot be widely used in real-life
applications. In Section 3, we show why this is the case and propose an efficient
alternative. In addition, we extend this alternative to get a pseudo-forgetting
method for the disjunctive rule of combination.

4

3 On the efficiency of decombination

In this section, we will study the problem of forgetting evidence from a compu-
tational point of view. We will focus on two masses m1 and m2, yet our results
extend directly to the case where we have ℓ masses m1, . . . ,mℓ, their combina-
tion m⊕1,...,ℓ

and want to remove the mass mi from it, as we are considering
associative combination rules. In this situation, mi and m⊕1,...,ℓ

correspond to
m2 and m in the next results. We therefore assume that two mass functions,
m1 and m2, have been combined by one of the methods previously introduced,
producing a mass function m.

3.1 Conjunctive combination

Given a state space X and mass functions m1 and m2, the problem of forget-
ting evidence after applying the unnormalized Dempster’s rule of combination
(Equation (4)) is formalized as follows:

Problem. Forgetting
Input: two mass functions m and m2, both given as a list of their focal elements
together with the corresponding mass values.
Output: the mass function m1 = m ⊖ m2, as a list of focal elements together
with the corresponding mass values.

Forgetting can be solved by applying the decombination operator (Equa-
tion (10)). However, this computation requires exponential time in the size of
the state space, as shown in the following proposition.

Proposition 1. Given two mass functions m and m2, given as a list of their
focal elements together with the corresponding mass values, computing m1 =
m⊖m2 by (1) computing the commonality functions q and q2 corresponding to m
and m2, respectively, (2) using these to compute the commonality function q1
corresponding to m1 via Equation (10), and (3) computing m1 from q1, takes
time exponential in the size n of the frame of discernment (in the worst case).

Proof. Let us consider n the number of possible states in X . From Equation (10),
we know that computing (m ⊖ m2)(A) by the decombination operator implies
computing the commonality function associated with m and m2 for every subset
of X that contains the set A. If A = ∅ this implies computing qm and qm2 for
every subset of X , that is, computing at least 2 · 2n operations.

The next result is a key element of our next developments, and give some
insights as to why it is useful to assume that masses are non-dogmatic.

Proposition 2. Let X be a state space, m1 an arbitrary mass function, m2 a
non-dogmatic mass function, and m = m1 ⊕K m2 or m = m1 ⊕m2 a combined
mass function. Then, the set Fm1

of focal elements of m1 is contained in the set
Fm of focal elements of m. That is, Fm1

⊆ Fm.

5

Proof. Let us assume that A ∈ Fm1
, i.e, m1(A) > 0. By Equation (2), m(A) =

1/K
∑

B∩C=A m1(B) ·m2(C). Since m2 is non-dogmatic, m2(X) ̸= 0. This means
that m1(A) ·m2(X) ̸= 0. Writing out the definition of m(A), we get:

m(A) = 1/K ·

m1(A) ·m2(X) +
∑

B∩C=A
(B,C)̸=(A,X)

m1(B) ·m2(C)

 ̸= 0.

This means that, A ∈ Fm for m = m1 ⊕K m2. A similar argument proves the
result form = m1⊕m2—only the factor 1/K gets removed from the equation.

We can use the above property to find an efficient solution for Forgetting.

Proposition 3. Forgetting can be computed in polynomial time.

Proof. Let Fm, Fm2
and Fm1

be the sets of focal elements of m, m2 and m1

respectively, and ℓ the number of focal elements of m. We will define a linear
system with ℓ equations and ℓ variables. For each A ∈ Fm, we introduce a
variable xA and add the equation

m(A) =
∑

B∩C=A,
B∈Fm2

,C∈Fm

m2(B) · xC

This linear system is consistent since it has at least one solution. Consider the
assignment that is obtained by setting xA = m1(A) if A ∈ Fm1 and setting xA =
0 otherwise. By Proposition 2 we know that Fm1 ⊆ Fm. This means that when
writing out the value ofm(A) for each A ∈ Fm using Equation (4), coincides with
substituting xC by m1(C) for each C ∈ Fm1

in the system of linear equations.
Therefore, we know that this solution satisfies all equations.

In addition, all equations of this linear system are independent. Let us assume
A1, . . . , At are different focal elements of m. Additionally, let us assume the
equation defined for A1, Eq(A1), is a linear combination of the equations defined
for the remaining focal elements A2, . . . , At, i.e., Eq(A2), . . . ,Eq(At) respectively.
Therefore, every variable in equations Eq(A2), . . . ,Eq(At) is also a variable in
Eq(A1). By definition of Eq(A1), if a variable xC forms part of this equation
then A1 ⊆ C; so A1 ⊆ Aj for every Aj ∈ {A2, . . . , At}. Following a similar
reasoning, we know the variable xA1 is at least in one equation Eq(Aj) with
Aj ∈ {A2, . . . , At}, so Aj ⊆ A1. Consequently, there exists Aj such that A1 =
Aj , which leads through a contradiction since all focal elements A1, . . . , At are
supposed to be different.

This system of linear equations can be computed in polynomial time, because
finding the pairs in (A,B) of focal elements of m and m2 (respectively) whose
intersection is a certain focal element of m requires computing ℓ ·s intersections,
where ℓ and s are the number of focal elements of m and m2, respectively.
Moreover, computing a solution to a system of linear equations can be done in
polynomial time, using linear programming algorithms—see, e.g., [12]. As the
system has as many variables as equations, the solution is unique.

6

Example 1. Let X = {a, b, c} be a state space and m1 and m2 be two mass
functions given by m1({a, b}) = 0.3, m1({b, c}) = 0.3, m1(X) = 0.4, and
m2({a, c}) = 0.5, m2({a}) = 0.2, m2(X) = 0.3.

Applying the unnormalized Dempster’s rule of combination, their combina-
tion m = m1 ⊕m2 is defined by m({a, b}) = 0.09, m({b, c}) = 0.09, m({a, c}) =
0.2, m({a}) = 0.29, m({c}) = 0.15, m(∅) = 0.06, m(X) = 0.12.

Now, let us assume that m and m2 are known and we want to compute m1.
Since m has 7 focal elements, we need to solve the following 7× 7 linear system:

m({a, b}) = m2(X) · x{a,b}
m({b, c}) = m2(X) · x{b,c}
m({a, c}) = m2({a, c}) · x{a,c} +m2({a, c}) · xX +m2(X) · x{a,c}
m({a}) = m2({a, c}) · x{a,b} +m2({a, c}) · x{a} +m2({a}) · x{a,b}

+ m2({a}) · x{a,c} +m2({a}) · x{a} +m2({a}) · xX
+ m2(X) · x{a}

m({c}) = m2({a, c}) · x{b,c} +m2({a, c}) · x{c} +m2(X) · x{c}
m(∅) = m2({a, c}) · x∅ +m2({a}) · x{b,c} +m2({a}) · x∅

+ m2({a}) · x{c} +m2(X) · x∅
m(X) = m2(X) · xX

Note that x{b} do not appear, because there are not focal events B of m2 and
C of m whose intersection is {b}.

If one substitutes the example numbers in the above equation, the obtained
linear system has a unique solution: x{a,b} = 0.3, x{b,c} = 0.3, x{a,c} = 0,
x{a} = 0, x{c} = 0, x∅ = 0, and xX = 0.4, which corresponds to m1.

We can find a similar solution for the normalized Dempster’s rule, that is,
given m = m1 ⊕K m2 and m2, we can find m1 in polynomial time. To this end,
we will explore the corresponding variation of Forgetting.

Problem. Normalized-Forgetting
Input: two mass functions m and m2 (where m2 is non-dogmatic), both given as
a list of their focal elements together with the corresponding mass values.
Output: the mass function m1 = m ⊖K m2, as a list of focal elements together
with the corresponding mass values.

Similarly to the case for Forgetting, Normalized-Forgetting can be
solved by means of computing commonality numbers—see Definition 1—but this
requires exponential time. We show that a similar approach as used to establish
Proposition 3 also works for Normalized-Forgetting.

Proposition 4. Normalized-Forgetting can be computed in polynomial time.

Proof. Let Fm, Fm1
and Fm2

be the sets of focal elements of m, m1 and m2

respectively, and ℓ the number of focal elements of m. Let us define a linear
system with ℓ+1 equations and ℓ+1 variables. For each A ∈ Fm, we introduce
a variable xA and add the following equation:

m(A) · xK =
∑

B∩C=A,
B∈Fm2

,C∈Fm

m2(B) · xC

7

We also introduce a variable xK and the following additional equation:

xK =
∑

A∩B ̸=∅,
A∈Fm,B∈Fm2

m2(B) · xA

This linear system is consistent since it has at least one solution. Namely,
consider the following assignment. We let xK = K, where K is the value of
Equation (3) for m1 and m2. We set xA = m1(A) if A ∈ Fm1

and xA = 0
otherwise. By Proposition 2 we know that Fm1

⊆ Fm. This means that when
writing out the value of m(A) for each A ∈ Fm using Equation (2), coincides
with substituting xC with m1(C) for each C ∈ Fm1 in the system of linear
equations. Therefore, we know that this solution satisfies all equations.

An analogous argument to the one used in the proof of Proposition 3 shows
that the system has a unique solution (that corresponds to m1 = m ⊖K m2).
Moreover, the system of linear equations can be constructed and solved in poly-
nomial time.

Example 2. Consider Example 1 with the same X , m1 and m2 with normaliza-
tion. Applying the normalized Dempster’s rule of combination, their combination
m = m1 ⊕K m2 is defined by m({a, b}) = m({b, c}) = 9/94, m({a, c}) = 10/47,
m({a}) = 29/94, m({c}) = 15/94, m(X) = 6/47.

Now, to compute m1 from m and m2 we need to solve the following 7 × 7
linear system:

9/94 · xK = 0.3x{a,b}
9/94 · xK = 0.3x{b,c}

10/47 · xK = 0.8x{a,c} + 0.5xX
29/94 · xK = 0.7x{a,b} + x{a} + 0.2x{a,c} + 0.2xX
15/94 · xK = 0.5x{b,c} + 0.8x{c}
6/47 · xK = 0.3xX

xK = x{a,b} + 0.8x{b,c} + x{a,c} + x{a} + 0.8x{c} + xX

3.2 Disjunctive combination

Solving linear systems to decombine evidence can be also applied to the disjunc-
tive rule of combination. However, we show that these linear systems may be
dependent–i.e., there will be an infinity of solutions–and this method does not
solve the problem in polynomial time in general, as it does for the conjunctive
rules. This is bad news computationally-wise, yet forgetting for the disjunctive
operator is less critical application-wise, as classical inversion operations con-
cerns the handling of inconsistency or the use of Dempster’s rule in valuation
based systems.

Problem. Disjunctive-Forgetting
Input: two mass functions m and m2, both given as a list of their focal elements
together with the corresponding mass values.
Output: a mass function m1 such that m1 ⃝∪ m2 = m, as a list of focal elements
together with the corresponding mass values.

8

When considering the disjunctive rule of combination, assuming that the
retracted mass function is non-dogmatic is not enough to ensure that Fm1

⊆ Fm.
For example, given a state space X = {a, b, c, d}, m1({a, b}) = 0.6, m1(X) = 0.4,
m2({c}) = 0.8, and m2(X) = 0.2, the focal elements of m = m1⃝∪ m2 are {a, b, c}
and X , so Fm1

̸⊆ Fm.
However, given an input for Disjunctive-Forgetting, we can define a

linear system to find m1 by following a similar strategy as in the proof of Propo-
sition 3. Let us consider the following linear system:

m(C) =
∑

A∪B=C,

A∈Fm2 ,B∈2X

m2(A) · xB , for every C ∈ Fm (12)

This system is consistent since m1 corresponds to one of its solutions. How-
ever, there may be more variables than equations, leading to an infinite solution
set. This is the case in the previous example. Again, suppose that the state
space is X = {a, b, c, d}, that m1({a, b}) = 0.6, m1(X) = 0.4, m2({c}) = 0.8,
and m2(X) = 0.2, and all other mass values are 0. Then m({a, b, c}) = 0.48
and m(X) = 0.52. Now, let us construct the corresponding linear system:

0.48 = 0.8x{a,b} + 0.8x{a,b,c},
0.52 = 0.8x{a,b,d} + 0.8xX +

∑
B∈2X 0.2xB .

This example also gives us the key to understand that this linear system
cannot be built in polynomial time in general.

Proposition 5. Given an input for Disjunctive-Forgetting, the number of
variables of the linear system defined in Equation (12) grows exponentially in the
size of the state space.

Proof. Take an arbitrary n ∈ N, and let X = {1, . . . , n}. Then choose m2 such
that X is a focal element of m2, i.e., m2(X) > 0. Then m(X) > 0 as well. So we
have an equation in the linear system defined in Equation (12) that corresponds
to X ∈ Fm. This equation includes an additive factor m2(B) ·xC for all B ∈ Fm2

and all C ∈ 2X such that B ∪ C = X . In particular, for B = X , this includes
variables xC for each C ⊆ X , which are 2n many.

We can add constraints to the linear system to get some suitable mass func-
tion m1, allowing us to solve Disjunctive-Forgetting in exponential time.

Proposition 6. Disjunctive-Forgetting is solvable in exponential time.

Proof. Given m2 and m we construct the linear system that is defined in Equa-
tion (12). In addition to this, we add the following (in)equalities:

1 =
∑

B∈2X xB ,
0 ≤ xB ≤ 1 for each B ∈ 2X .

Assuming that there exists some m1 such that m1 ⃝∪ m2 = m, the resulting
system has at least one solution, i.e., the one corresponding to m1. Moreover,

9

using polynomial-time algorithms for linear programming, we can find a solution
in time polynomial in the number of variables. As in the worst case there are an
exponential number of them, we can find a suitable m1 in exponential time.

Additionally, we can leverage (the polynomial-time computability of) opti-
mization versions of linear programming to select among the set of all possible
mass functions m1 such that m1 ⃝∪ m2 = m. For example, we could add the
optimization criterion that maximizes the following value opt =

∑
B⊆X |B| ·xB .

As indicated by results from the literature [5], any m1 that gives an optimal
value for opt will also be a maximal value in the partially ordered sets that are
induced by various extensions of set inclusion to belief functions. This is there-
fore an example of a well-motivated additional selection criterion to add. In fact,
the method shown in the proof of Proposition 6 also directly works for any ad-
ditional selection criterion on m1 that can be expressed as a linear function over
the variables xB .

Considering these results, we conclude that all the evidence rules of combina-
tion that have been discussed can be reversed by solving linear systems to some
extent. However, using the intersection to define the focal elements of the combi-
nation provides these rules with better properties—proper forgetting (meaning
that the result is uniquely defined) and polynomial-time computability—than
using the union. This holds regardless of the presence of normalization factors.
We should however note that, in the disjunctive case, considering subnormal-
ized masses (mi(∅) ̸= 0)–as in the decombination operator defined in [2] for this
rule–would ensure that Fm1

⊆ Fm, and similar results to those for the conjunc-
tive cases could be developed. Yet it seems a much stronger assumption than
mi(X) ̸= 0, as it would mean that our pieces of information are inconsistent
from the start.

4 Small illustrative use case

Consider that we have a user whose preferences we want to identify. We further
assume that these preferences depend on two (commensurate) criteria c1, c2 ∈ R
and that any object c⃗ = (c1, c2) ∈ R2 can be evaluated by a two parameter
function ω1c1 + ω2c2 with ωi ≥ 0 for i = 1, 2 and ω1 + ω2 = 1. In other words,
we assume the user preferences can be modelled by a weighted average.

A common issue in such problems is to identify or elicit the true parameters
ω⃗∗ = (ω∗

1 , ω
∗
2) ∈ [0, 1]2, typically through some interactions with the user that

is asked to compare or evaluate different alternatives. However, one can expect
the user to not to be fully certain of her assertions, and to potentially commit
mistakes leading to globally inconsistent assessments. In such a case, the use of
uncertainty frameworks such as possibility theory or belief functions has recently
been advocated as a good way to model this uncertainty and to treat the poten-
tially resulting inconsistency. We consider here that each user interaction results
in a simple support belief function where a single focal element Ai is given a
certainty value αi, and the rest goes to the frame R2. As ω1 + ω2 = 1, any focal

10

element can be summarised by the potential values of ω1, and often in the form
of closed intervals. We will adopt this simplifying assumption here.

We can already note that a straightforward application of Definition 1 is
just impossible, due to the fact that the frame of discernment is continuous. A
discretisation step would then be necessary at some point, but how to opera-
tionally define it would be difficult. In contrast, our approach can perfectly deal
with continuous frames of discernment, as long as the number of focal elements
remains finite (a much weaker and often satisfied assumption in practice).

Consider the following four mass functions, possibly given by a user:

m1(A1 = [0.4, 0.7]) = 0.8,m1([0, 1]) = 0.2; m2(A2 = [0.2, 06]) = 0.6,m2([0, 1]) = 0.4

m3(A3 = [0.65, 1]) = 0.4,m3([0, 1]) = 0.6; m4(A4 = [0, 0.3]) = 0.7,m4([0, 1]) = 0.3

The final mass resulting from Dempster combination is

m(A1) = 0.0576,m(A2) = 0.0216,m(A3) = 0.0056,m(A4) = 0.0336,

m(A5 = [0.4, 0.6]) = 0.0864,m(A6 = [0.65, 0.7]) = 0.0384,

m(A7 = [0.2, 0.3]) = 0.0504,m([0, 1]) = 0.0144

and m(∅) = 0.692, indicating a high degree of conflict in the result of the merg-
ing. A way to restore some consistency is then to forget one of the sources of
information, in which case it is natural to look for the source allowing for the
highest removal, i.e., the source i∗ such that

i∗ = arg min
i∈{1,...,4}

m−i(∅)

In order to do that, we just need to find the values of x∅ for four 7 × 7 linear
systems, a straightforward operation. We get i∗ = 4, and a diminshed conflict
of m−4(∅) = 0.24.

5 Conclusion

In this paper, we studied the complexity of decombining belief functions, both for
the conjunctive (unnormalized and normalized versions) and disjunctive rules.
We concluded that while the problem is well-posed and can be efficiently solved
for the conjunctive one, it is more problematic for the disjunctive one.

Next steps include applying our results to various applications (sensor mea-
surements, preference elicitation [9]) and studying the same problem for other
combination rules that are associative and commutative, such as the cautious
and bold rules [2].

Acknowledgments

Daira Pinto Prieto has benefited from a visit grant of the SAFE AI chair (funded
by the Fondation UTC pour l’Innovation).

11

References

1. A. P. Dempster. Upper and lower probabilities induced by a multivalued mapping.
In Classic works of the Dempster-Shafer theory of belief functions, pages 57–72.
Springer, 2008.

2. T. Denœux. Conjunctive and disjunctive combination of belief functions induced
by nondistinct bodies of evidence. Artificial Intelligence, 172(2-3):234–264, 2008.

3. T. Denœux. Logistic regression, neural networks and Dempster–Shafer theory: A
new perspective. Knowledge-Based Systems, 176:54–67, 2019.

4. S. Destercke and T. Burger. Toward an axiomatic definition of conflict between
belief functions. IEEE transactions on cybernetics, 43(2):585–596, 2013.

5. S. Destercke and D. Dubois. Idempotent conjunctive combination of belief func-
tions: Extending the minimum rule of possibility theory. Information Sciences,
181(18):3925–3945, 2011.

6. D. Dubois, F. Faux, and H. Prade. Prejudiced information fusion using belief func-
tions. In Belief Functions: Theory and Applications: 5th International Conference,
BELIEF 2018, Compiègne, France, September 17-21, 2018, Proceedings 5, pages
77–85. Springer, 2018.

7. P. H. Giang. Decision with Dempster–Shafer belief functions: Decision under igno-
rance and sequential consistency. International Journal of Approximate Reasoning,
53(1):38–53, 2012.

8. M. L. Ginsberg. Non-monotonic reasoning using Dempster’s rule. In AAAI, vol-
ume 84, pages 112–119. Citeseer, 1984.

9. P.-L. Guillot and S. Destercke. Preference elicitation with uncertainty: Extend-
ing regret based methods with belief functions. In 13th International Conference
on Scalable Uncertainty Management (SUM 2019), volume 11940, pages 289–309,
Compiègne, France, Dec. 2019.

10. I. Kramosil. Measure-theoretic approach to the inversion problem for belief func-
tions. Fuzzy Sets and Systems, 102(3):363–369, 1999.

11. S. Moral and N. Wilson. Markov chain Monte–Carlo algorithms for the calcu-
lation of Dempster–Shafer belief. In Proceedings of the Twelfth AAAI National
Conference on Artificial Intelligence, pages 269–274, 1994.

12. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.
13. G. Shafer. A Mathematical Theory of Evidence. Princeton University Press, Prince-

ton, NJ, 1976.
14. P. P. Shenoy. Conditional independence in valuation-based systems. International

Journal of Approximate Reasoning, 10(3):203–234, 1994.
15. P. P. Shenoy. Binary join trees for computing marginals in the Shenoy–Shafer ar-

chitecture. International Journal of approximate reasoning, 17(2-3):239–263, 1997.
16. P. Smets. Belief functions: The disjunctive rule of combination and the generalized

Bayesian theorem. International Journal of Approximate Reasoning, 9(1):1–35,
1993.

17. P. Smets. The canonical decomposition of a weighted belief. In International Joint
Conference on Artificial Intelligence, 1995.

18. P. Smets and R. Kennes. The transferable belief model. Artificial Intelligence,
66(2):191–234, 1994.

19. F. Xiaojing, H. Deqiang, Y. Yi, and J. Dezert. De-combination of belief function
based on optimization. Chinese Journal of Aeronautics, 35(5):179–193, 2022.

12

	How to efficiently decombine belief functions?

