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Abstract. This paper explores interaction operators utilized within the
framework of the inclusion and exclusion integral (IE-integral). Specifi-
cally, we introduce a novel duality concept for interaction operators and
the associative and commutative binary operators (AC-operators) that
produce them. These concepts are derived from the conventional dual-
ity of set functions through the framework of IE-integrals. Moreover,
we reframe IE-integrals and the aforementioned new concepts from the
standpoint of discrete derivatives.
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1 Introduction

The inclusion and exclusion integral (IE-integral) constitutes a class of inte-
grals based on monotone measures. The definition of this integral involves not
only monotone measures but also interaction operators, providing flexibility in
selecting operations and thereby introducing integrals with various properties.
For example, choosing the min-operator as the interaction operator yields the
Choquet integral, demonstrating that appropriate choices of operators enable
the definition of integrals with desirable properties. However unresolved issues
persist regarding the properties of these interaction operators and IE-integrals.

In this paper, we focus on interaction operators derived from associative and
commutative binary operators (AC-operators), offering fresh theoretical insights
into IE-integrals and their interaction operators by introducing a novel duality
concept through the IE-integral framework.

The structure of this paper is as follows: In Section 2, we introduce con-
cepts related to interaction operations and the definition of IE-integral. Section 3
presents the new duality concept for interaction operators and the AC-operators
that generate them. We also discuss pairs of dual operators, the uniqueness of
the arithmetic mean as self-dual interaction operations, and the relationship be-
tween the IE-integral and the Shapley values. Section 4 introduces two types of
discrete derivatives, demonstrating that computations related to the IE-integral
correspond to the high-order differentials of discrete functions.
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2 Preliminaries

Let X = {1, . . . , n} be a finite set. We denote the cardinality of a subset A ⊆ X
as |A|, and the power set of X as 2X .

Definition 1 (monotone measure). A set function µ : 2X → [0, 1] is said to
be a monotone measure if µ satisfies the following two conditions:

1. µ(∅) = 0, and
2. µ(A) ≤ µ(B) whenever A ⊆ B,A,B ∈ 2X .

Let ⊛ be an associative and commutative binary operator (also abbreviated
as AC-operator) on [0, 1]2. The iterations of the operations ⊛ is denoted as

⊛
i∈{1,··· ,n}

xi.

Definition 2 (t-norm and t-conorm [5]). An AC-operator ⊛ on [0, 1]2 is
said to be t-norm (resp. t-conorm) if the following conditions 1 and 2 (resp. 1
and 3).

1. x⊛ z ≤ y ⊛ z if x ≤ y ∀x, y, z ∈ [0, 1]
2. x⊛ 1 = x ∀x ∈ [0, 1]
3. x⊛ 0 = x ∀x ∈ [0, 1]

Definition 3 (interaction operator [4]). Let f : X → [0, 1] be a function on
X, and ⊛ be an AC-operator on [0, 1]2. An interaction operator If : 2X → [0, 1]
on X with respect to f is a set function on 2X satisfying the following conditions
1 and 2. A conjunctive (resp. disjunctive) interaction operator If with respect
to f is a set function on 2X satisfying the following conditions 2 and 3 (resp.
2 and 4). An interaction operator induced by AC-operator ⊛ is an interaction
operator I⊛f : 2X → [0, 1] on X satisfying the following condition 5:

1. If (∅) ∈ {0, 1},
2. If ({i}) = f(i) ∀i ∈ X,
3. If (∅) = 1 and If (S) ≥ If (T ) whenever S ⊆ T ,
4. If (∅) = 0 and If (S) ≤ If (T ) whenever S ⊆ T ,
5. I⊛f (S) = ⊛

i∈S
f(i) ∀S ∈ 2X (|S| > 1).

Example 1. [4] Let ⊗ be a t-norm on [0, 1]2. A set function If on 2X with respect
to a function f : X → [0, 1] defined by

If (S) :=

1 if S = ∅,
f(i) if S = {i} for some i ∈ X,⊗

i∈S f(i) otherwise

is a conjunctive interaction operator. Let ⊕ be a t-conorm on [0, 1]2. A set
function If on 2X with respect to a function f : X → [0, 1] defined by

If (S) :=

0 if S = ∅,
f(i) if S = {i} for some i ∈ X,⊕

i∈S f(i) otherwise

is a disjunctive interaction operator.
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Definition 4 (inclusion-exclusion integral [4]). Let f : X → [0, 1] be a
function on X and µ : 2X → [0, 1] a monotone measure. The inclusion-exclusion
integral of f with respect to an interaction operator If with respect to f and µ,
denoted by (IE)

∫
f dµ, is defined by

(IE)

∫
f dµ :=

∑
S∈2X

If (S) ·mµ(S),

where mµ is the Möbius transform of µ, i.e., mµ(S) =
∑

T⊆S(−1)|S\T |µ(T ) for
S ∈ X.

It has been known that the inclusion-exclusion integral can be represented in
another form as follows:

(IE)

∫
f dµ =

∑
S∈2X

M I
f (S) · µ(S),

where

M I
f (S) :=

∑
T⊇S

(−1)|T\S|If (T ) =
∑
T⊆Sc

(−1)|T |If (S ∪ T ) for S ∈ 2X . (1)

Inversely,

If (S) =
∑
T⊇S

M I
f (T ).

Proposition 1. [4]

f(i) =
∑
S∋i

M I
f (S) ∀f : X → [0, 1],

i.e.,

f =
∑
S∈2X

M I
f (S) · χS ,

where χS is the characteristic function of S.

Example 2. The inclusion-exclusion integral of f with respect to the interac-
tion operator induced by the min-operator ∧ and µ coincides with the Choquet
integral of f with respect to µ, i.e.,

(C)

∫
f dµ =

∑
S∈2X

∧
i∈S

f(i) ·mµ(S).

In [1], integral with respect to non-additive measures, including Choquet and
Sugeno integrals, is conceptualized within a more generalized framework termed
Choquet-Sugeno-like operator. The inclusion-exclusion integral is also considered
as one of the Choquet-Sugeno-like operators within this framework, where inter-
action operators constitute one class of conditional aggregation operators.
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3 Duality

In this section, we introduce a new duality concept of AC and interaction op-
erators, which is derived from the duality of non-additive measures through the
IE-integral.

Definition 5 (duality of monotone measures [6]). Two monotone measures
µ and µ∗ are said to be dual if

µ∗(S) = µ(X)− µ(Sc) ∀S ∈ 2X .

Example 3. The belief function Bel : 2X → [0, 1] and the plausibility function
Pl : 2X → [0, 1] in the evidence theory[9] are dual. Besides, every additive
measure v : 2X → [0, 1] is self-dual, i.e., v(S) = v(X)− v(Sc) for any S ∈ 2X .

Definition 6 (duality of AC-operators [7]). Two AC-operators ⊗ and ⊕
are said to be dual if

a⊕ b = 1− (1− a)⊗ (1− b) ∀a, b ∈ [0, 1],

i.e., ⊕
i

ai = 1−
⊗
i

(1− ai) ∀{ai} ⊆ [0, 1]

Example 4. All of the following pairs of AC-operators (pairs of t-norm and t-
conorm) are dual, respectively: (min ∧, max ∨), (algebraic product •, algebraic
sum ⊞), (bounded product ⊙, bounded sum ⊕), and (drastic product ⊤, drastic
sum ⊥), where a ∧ b = min{a, b}, a ∨ b = max{a, b}, a • b = ab, a ⊞ b =
1− (1− a)(1− b), a⊙ b = max{0, a+ b− 1}, a⊕ b = min{1, a+ b},

a⊤ b =


a if b = 1,

b if a = 1,

0 otherwise,

and a ⊥ b =


a if b = 0,

b if a = 0,

1 otherwise.

Definition 7 (duality of interaction operators). Two interaction operators
If and I∗f with respect to f are said to be dual in IE-integral if∑

S∈2X

If (S) ·mµ(S) =
∑
S∈2X

I∗f (S) ·mµ∗(S) ∀f : X → [0, 1],∀µ : 2X → [0, 1].

Let I⊗f be the interaction operator induced by an AC-operator ⊗ and I⊕f the
interaction operator induced by an AC-operator ⊕. The AC-operators ⊗ and ⊕
are said to be dual in IE-integral if I⊗f and I⊕f are dual in IE-integral.

In other words, the duality between AC and interaction operators is established
through the duality of monotone measures within the context of the IE-integral.
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Proposition 2. The interaction operator I∧f induced by the min-operator (∧)
and the interaction operator I∨f induced by the max-operator (∨) are dual in
IE-integral, i.e., The AC-operators ∧ and ∨ are dual in IE-integral.

Proposition 3. Let If and I∗f be two interaction operators on X and M I
f (S) :=∑

T⊃S(−1)|T\S|If (T ). Then If and I∗f are dual in IE-integral if and only if the
following two conditions hold: for any f : X → [0, 1],

1.
∑

∅̸=S∈2X

M I∗

f (S) = M I
f (X),

2. M I∗

f (Sc) = −M I
f (S) ∀S ∈ 2X \ {∅, X}.

Proposition 4. The interaction operator I•f induced by the algebraic product

• and the interaction operator I⊞f induced by the algebraic sum ⊞ are dual in
IE-integral, i.e., The AC-operators • and ⊞ are dual in IE-integral.

Example 5. The pairs (⊙, ⊕) and (⊤, ⊥) are dual AC-operators. However, they
are not dual in IE-integral. Indeed, for a function f : {1, 2, 3} → [0, 1] such as
f(1) = 0.7, f(2) = 0.5, f(3) = 0.3, M⊙

f ({1, 2}) = 0.2 and M⊕
f ({3}) = −0.5, and

M⊤
f ({1, 2}) = 0 and M⊥

f ({3}) = −0.7. These violate condition 2 in Proposition
3.

Definition 8. For a function f : X → [0, 1], the interaction operator induced
by the arithmetic mean Iamf with respect to f is defined by

Iamf (S) :=

∑
i∈S f(i)

|S|
.

Applying Proposition 3 to Iamf yields the following proposition.

Proposition 5. The interaction operator induced by the arithmetic mean is self-
dual, i.e., ∑

S∈2X

Iamf (S) ·mµ(S) =
∑
S∈2X

Iamf (S) ·mµ∗(S),

for any function f : X → [0, 1] and any monotone measure µ : 2X → [0, 1].

This proposition can also be proved from the following Propositions 6 and 7.

Definition 9 (The Shapley value [8]). Let µ : 2X → [0, 1] be a monotone
measure. The Shapley value Φ(µ) = (ϕ1(µ), · · · , ϕn(µ)) of µ is defined by

ϕi(µ) =
∑
S∈2X

S ̸∋i

|S|! (n− |S| − 1)!

n!
(µ(S ∪ {i})− µ(S)) , i ∈ X

Proposition 6. [8] Let µ : 2X → [0, 1] be a monotone measure on 2X and
µ∗ : 2X → [0, 1] be its dual (i.e., µ∗(S) = µ(X)− µ(Sc) for S ∈ 2X). Then,

Φ(µ) = Φ(µ∗),

where Φ(µ) is the Shapley value of µ. This property is recognized as the self-
duality property of the Shapley value.
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Proposition 7. Let Iam be the interaction operator induced by arithmetic mean
(see, Definition 8), and µ : 2X → [0, 1] a monotone measure on 2X . The
inclusion-exclusion integral of f : X → [0, 1] with respect to Iam and µ can
be represented as follows:

(IE)

∫
f dµ =

∫
f d ϕi(µ) =

∑
i∈X

f(i) · ϕi(µ),

where Φ(µ) := (ϕ1(µ), . . . , ϕn(µ)) is the Shapley value of µ.

Corollary 1. Let f j := χ{j} and I := Iam. Then we have

(IE)

∫
f j dµ = ϕj(µ).

Proposition 8. Let Iam be the interaction operator induced by the arithmetic
mean (see, Definition 8), and µ : 2X → [0, 1] a monotone measure on 2X . The
inclusion-exclusion integral of f : X → [0, 1] with respect to Iam and µ is an
integral functional, that is,

1. f = 0 implies (IE)

∫
f dµ = 0,

2. f ≤ g, that is, fi ≤ gi, i ∈ X implies (IE)

∫
f dµ ≤ (IE)

∫
g dµ.

4 Discrete derivative of set functions

In this section, we discuss the IE-integral and its duality from the standpoint of
discrete derivatives.

Definition 10 (discrete derivative). Given a set function µ : 2X → [0, 1] and
two disjoint non-empty subsets S, T ⊆ X, we denote by ∆FW

S µ(T ) the forward-
S-derivative (left-hand S-derivative) of µ at T [3], which is recursively defined
by

∆FW
{i} µ(T ) := µ(T ∪ {i})− µ(T ) ∀i ∈ S,

and

∆FW
S µ(T ) := ∆FW

{i} [∆
FW
S\{i}µ(T )] ∀i ∈ S.

On the other hand, the backward-S-derivative (right-hand S-derivative) of µ at
S ∪ T , denoted by ∆BW

S µ(S ∪ T ), is recursively defined by

∆BW
{i} µ(S ∪ T ) := µ(S ∪ T \ {i})− µ(S ∪ T ) ∀i ∈ S,

and

∆BW
S µ(S ∪ T ) := ∆BW

{i} [∆BW
S\{i}µ(S ∪ T \ {i})] ∀i ∈ S.
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We can easily prove, in a similar way as in [3], by induction on |S| that

∆FW
S µ(T ) =

∑
L⊆S

(−1)|S\L|µ(T ∪ L)

and
∆BW

S µ(S ∪ T ) =
∑
L⊆S

(−1)|L|µ(T ∪ L).

Example 6. Let us consider discrete {i, j}-derivatives of µ at T or T ∪ {i, j}
through Figure 4.1. For a T ∈ 2X and i, j ∈ X \ T ,

∆FW
{i} µ(T ) = µ(T ∪ {i})− µ(T )

and

∆FW
{i} µ(T ∪ {j}) = µ(T ∪ {i, j})− µ(T ∪ {j})

(red arrows in Figure 4.1 (a)). Then,

∆FW
{i,j}µ(T ) = ∆FW

{i} µ(T ∪ {j})−∆FW
{i} µ(T )

= µ(T ∪ {i, j})− µ(T ∪ {i})− µ(T ∪ {j}) + µ(T )

(the blue arrow in Figure 4.1 (a)). While,

∆BW
{i} µ(T ∪ {i}) = µ(T )− µ(T ∪ {i})

and

∆BW
{i} µ(T ∪ {i, j}) = µ(T ∪ {j})− µ(T ∪ {i, j})

(red arrows in Figure 4.1 (b)). Then,

∆BW
{i,j}µ(T ∪ {i, j}) = ∆BW

{i} µ(T ∪ {i})−∆BW
{i} µ(T ∪ {i, j})

= µ(T ∪ {i, j})− µ(T ∪ {i})− µ(T ∪ {j}) + µ(T )

(the blue arrow in Figure 4.1 (b)).

Example 7. Let us consider discrete {i, j, k}-derivatives of µ at T or T ∪{i, j, k}
through Figure 4.2. For a T ∈ 2X and i, j, k ∈ X \ T , similar to Example 6,

∆FW
{i,j}µ(T ) = ∆FW

{i} µ(T ∪ {j})−∆FW
{i} µ(T )

= [µ(T ∪ {i, j})− µ(T ∪ {i})]− [µ(T ∪ {j})− µ(T )]

and

∆FW
{i,k}µ(T ∪ {j}) = ∆FW

{i} µ(T ∪ {j, k})−∆FW
{i} µ(T ∪ {j})

= [µ(T ∪ {i, j, k})− µ(T ∪ {i, j})]− [µ(T ∪ {j, k})− µ(T ∪ {j})]



8 Katsushige Fujimoto and Aoi Honda

(b) backward { }-derivative at 

=

(a) forward { }-derivative at 

=

Fig. 4.1. {i, j}-derivative at T (or T ∪ {i, j})

(blue arrows in Figure 4.2 (c)). Then,

∆FW
{i,j,k}µ(T ) = ∆FW

{i,k}µ(T ∪ {j})−∆FW
{i,k}µ(T )

= [µ(T ∪ {i, j, k})− µ(T ∪ {i, j})− µ(T ∪ {j, k}) + µ(T ∪ {j})]
−[µ(T ∪ {i, k})− µ(T ∪ {i})− µ(T ∪ {k}) + µ(T )]

(the green arrow in Figure 4.2 (c)). While,

∆BW
{i,j,k}µ(T ∪ {i, j, k}) = −µ(T ∪ {i, j, k}) + µ(T ∪ {i, j}) + µ(T ∪ {j, k})− µ(T ∪ {j})

+µ(T ∪ {i, k})− µ(T ∪ {i})− µ(T ∪ {k}) + µ(T )

(the green arrow in Figure 4.2 (d)).

(c) forward { }-derivative at (d) backward { }-derivative at 

Fig. 4.2. {i, j, k}-derivative at T (or T ∪ {i, j, k})
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Proposition 9. Let If be an interaction operator with respect to f : X → [0, 1]
and M I

f a set function induced by the equation (1). Then, it holds that

M I
f (S) = ∆BW

Sc If (S ∪ Sc) = ∆BW
Sc If (X),

mµ(S) =
∑
L⊆S

(−1)|S\L|(∅ ∪ L) = ∆FW
S µ(∅).

Corollary 2. Let f : X → [0, 1] be a function, If : 2X → [0, 1] an interaction
operator with respect to f , and µ : 2X → [0, 1] a monotone measure. Then, the
inclusion and exclusion integral of f with respect to If and µ is represented,
through the use of discrete derivatives, as

(IE)

∫
f dµ =

∑
S∈2X

If (S) ·∆FW
S µ(∅) =

∑
S∈2X

∆BW
Sc If (X) · µ(S).

In the preceding section, we explored the duality between pairs of dual AC-
operators (∧, ∨) and (•, ⊞) exhibited duality in the context of the IE-integral,
and pairs of dual AC-operators (⊙, ⊕) and (⊤, ⊥) that did not. Hereafter, we
will analyze the distinctions between these pairs utilizing the concept of discrete
derivatives.

Proposition 10. Let I∧f be the interaction operator induced by the min-operator
∧. Then, for any function f : X → [0, 1],

∆BW
S I∧f (S ∪ T ) ≥ 0 ∀S, T ∈ 2X , S ∩ T = ∅

Proposition 11. Let I•f be the interaction operator induced by the algebraic
product •. Then, for any function f : X → [0, 1],

∆BW
S I•f (S ∪ T ) ≥ 0 ∀S, T ∈ 2X , S ∩ T = ∅

Corollary 3.

M∧
f (S) ∈ [0, 1] ∀S(̸= ∅) ∈ 2X ,

M•
f (S) ∈ [0, 1] ∀S( ̸= ∅) ∈ 2X ,

i.e., Any function f : X → [0, 1] on X can be extended to functions M∧
f , M

•
f :

2X → [0, 1] on 2X through the use of interaction operators ∧ and • as

f =
∑
S∈2X

M∧
f (S) · χS =

∑
S∈2X

M•
f (S) · χS .

Example 8. M⊤
f is not always a function on 2X to [0, 1]. Indeed, for a function

f : {1, 2, 3} → [0, 1] such as f(1) = 1, f(2) = 0.8, f(3) = 0.6, then M⊤
f ({1}) =

−0.4 ̸∈ [0, 1]. Besides, neither is M⊙
f , for a function f : {1, 2, 3, 4} → [0, 1] such

as f(1) = 1, f(2) = 0.8, f(3) = 0.6, f(4) = 0.2, then M⊙
f ({1}) = −0.2 ̸∈ [0, 1].
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Proposition 12. Let I and I∗ be dual (in IE-integral) interaction operators on
X. If ∆BW

S I(S ∪ T ) ≥ 0 for any disjoint non-empty disjoint subsets S, T ∈ 2X ,
then ∆BW

S I∗(S ∪ T ) ≤ 0 for any non-empty disjoint subsets S, T ∈ 2X .

From Proposition 2, 4, 10, 11, and 12, we have the following proposition and its
corollary:

Proposition 13. Let I∨f be the interaction operator induced by the max-operator

∨ and I⊞f the interaction operator induced by the algebraic sum operator ⊞. Then,

∆BW
S I∨f (S ∪ T ) ≤ 0, and ∆BW

S I⊞f (S ∪ T ) ≤ 0

for any disjoint non-empty sets S, T ∈ 2X .

Corollary 4. Let I∨f be the interaction operator induced by the max-operator ∨
and I⊞f the interaction operator induced by the algebraic sum operator ⊞. Then,

M∨
f (S) ≤ 0, and M⊞

f (S) ≤ 0

for any non-empty subset S( ̸= X) ∈ 2X and any function f : X → [0, 1].

5 Conclusion

In this study, we introduced a new duality concept for AC-operators. This con-
cept is derived from the duality of monotone measures through the IE-integral
and is referred to as the duality in IE-integral. As you may know, t-norms and
t-conorms are one of the AC-operators. AC-operators also have a duality con-
cept as stated in Definition 6. Dual AC-operators, such as max and min, are
also dual in IE-integral, so are the algebraic sum and product. However, not
all AC-operators that are dual are necessarily dual in IE-integral. Additionally,
we reframe IE-integrals from the perspective of discrete derivatives. Further-
more, from a different perspective, certain relationships between the interaction
operator and the conditional aggregation operator introduced in [1] have been
acknowledged. Clarifying these relationships is a key task for future work.
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