
Functors in Fuzzy Category Theory

Emı̄ls Kalugins1[0009−0003−8401−9250] and Alexander
Šostak1,2[0000−0003−3763−7032]

1 Department of Mathematics, University of Latvia, R̄ıga, Latvia
{emils.kalugins,aleksandrs.sostaks}@lu.lv

2 Institute of Mathematics and CS, University of Latvia, R̄ıga, Latvia
aleksandrs.sostaks@lumii.lv

Abstract. Fuzzy category theory describes category-like structures in
which potential objects and potential morphisms are respectively objects
and morphisms only to a certain degree. This also allows us to look at
categories with crisp objects and morphisms from the point of fuzzy set
theory without necessarily framing, explicitly or implicitly, the objects
or morphisms of a category in a fuzzy way. Building on the work done
on functors in fuzzy categories, we further develop the theory until the
notion of adjoint functors using the unit and co-unit. We also provide
a sufficient condition for a fuzzy functor so that it admits a left adjoint
with a certain degree.
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1 Introduction

Since the inception of fuzzy set theory, significant efforts have been made to
find fuzzy analogues to fundamental concepts in classical mathematics. Several
approaches to fuzzy topology have been developed [1,3,9], and these approaches
have even been compared with the tools of category theory [7, 8], resulting in
the creation of categories whose objects are fuzzy topologies. Similarly, fuzzy
algebraic structures have been developed [5], and fuzzy topologies on algebraic
structures have also been explored [6]. Although we are discussing fuzzy struc-
tures, the underlying categories remain crisp. Naturally, there is also an inter-
est in developing a fuzzy analogue of one of the most influential mathematical
paradigm shifts — category theory.

Instead of researching classical categories from the perspective of fuzzy struc-
tures, the goal of this paper is to develop fuzzy category theory. In other words,
we aim to develop a theory of structures that resemble categories, but where po-
tential objects and potential morphisms are respectively objects and morphisms
only to some degree [10]. Just as fuzzy set theory encompasses the concept of
a classical set, fuzzy category theory includes classical categories as a special
case. By additionally keeping track of the membership degrees of objects and
morphisms, we can locally describe both fuzzy and crisp structures in an other-
wise context-free framework. With the help of fuzzy categories it is also possible
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to model situations within crisp structures by relaxing the requirements on the
objects or morphisms, e.g., we can assign a measure of continuity to arbitrary
set morphisms to extend the class of morphisms for the category of topological
spaces Top.

Fuzzy category theory has seen relatively little progress. While various ex-
amples of fuzzy categories have been constructed, the theory itself has not seen
development beyond the definitions of fuzzy morphisms and functors [12]. In
this paper, we take the next step by introducing a definition for natural trans-
formations in fuzzy categories, as well as defining adjoint functors through the
unit and co-unit whilst also taking the first steps into proving an analogue of
the adjoint functor theorem for functors in fuzzy categories.

2 Fuzzy Category Theory

2.1 Preliminaries

Definition 1 ([2]). A GL-monoid is a complete lattice, whose universal up-
per and lower bounds are respectively ⊤ and ⊥, enriched with a further binary
operation ∗, i.e., a triple (L,≤, ∗) such that:

1. ∗ is monotone, i.e. α ≤ β implies α ∗ γ ≤ β ∗ γ for any α, β, γ ∈ L;
2. ∗ is commutative, i.e. α ∗ β = β ∗ α for any α, β ∈ L;
3. ∗ is associative, i.e. α ∗ (β ∗ γ) = (α ∗ β) ∗ γ for any α, β, γ ∈ L;
4. (L,≤, ∗) is integral, i.e. ⊤ acts as the unity: α ∗ ⊤ = α for any α ∈ L;
5. ⊥ acts as the zero element in (L,≤, ∗), i.e., α ∗ ⊥ = ⊥ for any α ∈ L;
6. ∗ is distributive over arbitrary joins, i.e. a ∗

(∨
j βj

)
=

∨
j(a ∗ βj) for any

α ∈ L and {βj | j ∈ J} ⊆ L;
7. (L,≤, ∗) is divisible, i.e. any α, β ∈ L for which α ≤ β implies the existence

of γ ∈ L such that α = β ∗ γ.

Furthermore, it is known that each GL-monoid is residuated, i.e., there exists
a further binary operator 7→ : L× L → L (implication) on the lattice L, which
satisfies the following condition:

β ∗ α ≤ γ ⇐⇒ α ≤ (β 7→ γ) for any α, β, γ ∈ L.

Explicetly the implication is given by α 7→ β =
∨
{λ ∈ L | α ∗ λ ≤ β}.

As an example of GL-monoids one can mention Heyting algebras, i.e., any
infinitely distributive lattice (L,≤) with the operation ∗ = ∧ forms a Heyting
algebra and is a GL-monoid. Another useful class of GL-monoids is formed
through the usage of continuous t-norms. It is known [2] that ([0, 1],≤, T ) is a
GL-monoid, where T is a t-norm on [0, 1] if and only if T is a continuous t-norm,
i.e., it is continuous as a function in the usual interval topology [0, 1]× [0, 1].

In the following we denote by L both the GL-monoid, i.e. L = (L,≤, ∗), and
the lattice L itself.
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2.2 Fuzzy Categories

Definition 2 ([11]). An L-fuzzy category is a tuple C = (Ob(C), ω,M(C), µ, ◦)
where (Ob(C),M(C), ◦) is a crisp category and ω : Ob(C) → L, µ : M(C) → L.
Additionally ω and µ satisfy the following conditions:

1. if f : X → Y , then µ(f) ≤ ω(X) ∧ ω(Y );
2. µ(g ◦ f) ≥ µ(g) ∗ µ(f) whenever g ◦ f is defined;
3. if idX : X → X is the identity morphism, then µ(idX) = ω(X).

Just as in classical category theory, we will write f : X → Y instead of
f ∈ MC(X,Y ). We will refer to the object X as the domain and Y as the
codomain of f . Furthermore, let us assume that L is known. In other words,
instead of calling C an L-fuzzy category, we will refer to it as a fuzzy category.

We define Obα(C) = {X ∈ Ob(C) | ω(X) ≥ α} and in a similar manner
Mα(C) = {f ∈ M(C) µ(f) ≥ α}. Objects from Obα(C) are called α-objects, and
morphisms from Mα(C) are called α-morphisms.

Now, consider a fuzzy category C = (Ob(C), ω,M(C), µ, ◦) and an object X ∈
Ob(C). Intuitively, the value of ω(X) indicates the degree to which the potential
object X truly belongs to the fuzzy category C. Similarly, for a morphism f ∈
M(C), the value of µ(f) indicates the degree to which it is a morphism in the
fuzzy category C. Thus, we will use the terms “object degree" and “morphism
degree".

Let us assume that C = (Ob(C),M(C), ◦) is a classical category. In this case,
we can view the category C as a fuzzy category (Ob(C), ω,M(C), µ, ◦), where
ω and µ are defined as ω ≡ 1 and µ ≡ 1. Thus, classical categories and fuzzy
categories that satisfy both of these additional conditions, i.e., ω ≡ 1 and µ ≡ 1,
are essentially the same.

Furthermore, we can also obtain classical categories from fuzzy categories. If
a fuzzy category C = (Ob(C), ω,M(C), µ, ◦) is given and ι ∈ L is an idempotent
element, then it is possible to create a classical category Cι = (Obι(C),Mι(C), ◦),
whose objects are all ι-objects and morphisms are ι-morphisms. We will call the
categories created in this way threshold categories. There are two special cases
for threshold categories. If ι = ⊤, then C⊤ is called the upper frame of the
fuzzy category C. This threshold category will contain only those objects and
morphisms whose degree of membership is ⊤ or 1L = 1. Of course, the case
where the upper frame could coincide with the empty category is not excluded.
The other interesting case is when ι = ⊥. In this case, the threshold category
C⊥ is called the bottom frame. This threshold category will contain all objects
whose degree of membership is at least ⊥ or 0L = 0. So essentially it will contain
all objects, but their degree of membership will be forgotten. Bottom frames are
important because they form the basis for creating fuzzy categories from classical
categories, as we will see later. Moreover, we can interpret the fuzzy category C
as a kind of lattice, with the upper frame at the top and the bottom frame at
the bottom. It will often happen that the upper frame and the bottom frame
will be some well-known classical categories. In between, there could be classical
categories of interesting character that have not been considered yet.
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These threshold categories are in a sense classical subcategories to the fuzzy
category, but it is also possible to create fuzzy subcategories.

Definition 3 ([11]). Suppose that C = (Ob(C), ω,M(C), µ, ◦) is an L-fuzzy cat-
egory. We call the L-fuzzy category C′ = (Ob(C), ω′,M(C), µ′, ◦), where ω′ ≤ ω
and µ′ ≤ µ, an L-fuzzy subcategory of C .

A fuzzy category and its subcategory have the same class of objects and class of
morphisms. The only difference is that the membership degrees of objects and
morphisms in the subcategory are potentially lower.

In classical category theory, an important principle is duality, i.e., every def-
inition is available in two versions. If we change the directions of morphisms
in a classical category, i.e., arrows are reversed and the composition law is also
reversed, then we can obtain the dual or opposite category. This construction is
also possible in fuzzy categories, i.e., if C = (Ob(C), ω,M(C), µ, ◦) is a fuzzy cat-
egory, then its dual fuzzy category will be Cop = (Ob(C), ω,M(C), µ, ◦op), where
◦op is defined as f ◦op g = g ◦ f . In this paper, dual definitions will not be
explored, but anyone familiar with classical category theory can develop them.

2.3 Functors

Definition 4 ([11]). Let us assume that C = (Ob(C), ωC ,M(D), µC , ◦) and D =
(Ob(D), ωD,M(D), µD, ◦) are fuzzy categories and let F1 : Ob(C) → Ob(D) and
F2 : M(C) → M(D) be maps. The quadruple F := (C,D, F1, F2) is called a
δ-functor (δ ∈ L) if the following requirements are satisfied:

1. if f ∈ MC(X,Y ), then F2(f) ∈ MD(F1(X), F1(Y ));
2. F2 preserves composition, i.e., F2(g ◦ f) = F2(g) ◦ F2(f), if the composition

f ◦ g is defined;
3. F preserves identities, i.e., F2 (idX) = idF1(X) for any X ∈ Ob(C);
4. µC(f) ∗ δ ≤ µD(F2(f)) for any f ∈ M(C).

Of course, if δ′ ≤ δ, then a δ-functor is also a δ′-functor. In the special case of a
1-functor, it is a δ-functor for any δ ∈ L.

Instead of writing F1(X) and F2(f), we will write F (X) and F (f) respec-
tively. To describe a functor from C to D, we will write F : C → D. Similarly,
we will write ω instead of ωC or ωD, even if both of these mappings appear
simultaneously in an equation, as the context will always make it clear in which
category the membership degree is being measured. We will also treat µ and µC
or µD in the same way.

The definition of a functor does not include conditions on the degrees of
objects, but only on morphisms. One just has to recall that by definition, each
object has an identity morphism.

Proposition 1. If F : C → D is a δ-functor, then ωC(X) ∗ δ ≤ ωD(F (X)) for
all X ∈ Ob(C).
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Proof. Since functors preserve identities and the degree of membership of an
object coincides with the membership degree of the identity morphism, we have
ωC(X) ∗ δ = µC(idX) ∗ δ ≤ µD (F (idX)) = µD

(
idF (X)

)
= ωD(F (X)). ⊓⊔

Moreover, if the lattice L is a Heyting algebra and µ and ω are synced, i.e, for
any f ∈ MC(X,Y ), µ(f) = ω(X)∧ω(Y ), then µ(f) ≥ α if and only if ω(X) ≥ α
and ω(Y ) ≥ α.

Proposition 2. If F : C → D is a δ-functor and δ is an idempotent element,
then the restriction of the functor Fδ : Cδ → Dδ to the threshold categories Cδ
and Dδ is a classical functor between these categories.

Proof. To prove this, it suffices to show that Fδ(Cδ) ⊆ Dδ, since then we cannot
have a situation where the codomain of one of the δ-morphisms does not belong
to the threshold category. Suppose f ∈ Mδ(C). Then µD(F (f)) ≥ µC(f) ∗ δ ≥
δ ∗ δ = δ. From Proposition 1 we can infer that for any X ∈ Cδ there will also
be ωD(F (X)) ≥ δ. ⊓⊔

The converse is not always true except in the trivial case, i.e., if F : C⊥ → D⊥
is a classical functor between bottom frame categories, then F is a 0-functor from
C to D. Combining this with Proposition 2 we can describe 0-functors.

Proposition 3. A functor F : C → D is a 0-functor if and only if the restriction
of the functor F to the bottom frame categories F⊥ : C⊥ → D⊥ is a classical
functor between the corresponding bottom frame categories.

We can combine functors in fuzzy categories to form new functors.

Proposition 4. If F : A → B is a λ-functor and G : B → C is a δ-functor, then
their composition GF : A → C is a λ ∗ δ-functor.

Proof. Suppose f ∈ M(A). Since F is a λ-functor and G is a δ-functor, then
µC(GF (f)) ≥ λ ∗ µB(G(f)) ≥ (λ ∗ δ) ∗ µA(f). ⊓⊔

Of course, this does not mean that GF cannot have a higher degree.

Example 1. Suppose we consider a fuzzy discrete category C with three objects
X1, X 1

2
, X0 whose degrees coincide with their indices. We can define functors

F,G : C → C by the corresponding diagrams:

X1 X1

X 1
2

X0 X 1
2

X0

F G

.
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As soon as a functor represents an object whose membership degree is not
0 by an object whose membership degree is 0, then that functor is a 0-functor,
so we can conclude that F and G are 0-functors. However, by composing these
functors into FG and GF we obtain 1-functors as identity functors. From this
example we can see that if the degree of the functors FG and GF is known, it is
not possible to infer any information about the functors F and G with respect
to their degrees unless additional information is given.

The question of inferring the degree of a functor is quite important. In classi-
cal category theory there are several theorems which deduce the existence of
a particular (left adjoint) functor. Although these theorems can be proven in
fuzzy category theory, it will not guarantee the degree of the functor, so we end
up with only a 0-functor. It would be desirable to find sufficient and necessary
conditions that would guarantee the degree of a functor if some of its composi-
tions and other conditions are known. In classical category theory all functors
are considered 1-functors in the fuzzy sense, so no such problems arise there.

Moreover, even if the degrees of the functors G,FG and GF are known, it
is not possible to conclude anything about the functor F without additional
information.

Example 2. Suppose that the fuzzy category C from Example 1 is given. Let us
define the functors F,G : C → C with the following diagrams:

X1 X1

X 1
2

X0 X 1
2

X0

F G

.

We can notice that G is a 1
2 -functor, FG is a 1-functor, FG is a 1

2 -functor, but
F is a 0-functor.

There is a simple sufficient condition, but of course it is not necessary, to
determine the degree of the functor F if some information about G and GF is
known.

Definition 5. Let F : A → B and G : B → C be functors between fuzzy cat-
egories. We call a functor G non-increasing with respect to F if µB(F (f)) ≥
µC(GF (f)) for all f ∈ M(A).

Although this is a strong condition, in a way it will be natural when we apply
it to initial objects in comma categories.

Proposition 5. Suppose F : A → B and G : B → C are functors between fuzzy
categories, and GF is a δ-functor. If G is non-increasing with respect to F , then
F is a δ functor.

Proof. Since G is non-increasing with respect to F , for any morphism f ∈ M(A)
we have µB(F (f)) ≥ µC(GF (f)) ≥ δ ∗ µA(f). ⊓⊔
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3 Adjoint functors

From now on we assume that the lattice L is a linearly ordered Heyting algebra.
Furthermore, we assume that we are dealing with fuzzy categories in which the
membership degrees of morphisms are synced with the membership degree of
objects, i.e., µ(f) = ω(X) ∧ ω(Y ) for all f ∈ MC(X,Y ).

3.1 Natural transformations

Definition 6. Let F,G : C → D be δ-functors. We call a family of morphisms
η : F ⇒ G, where for each X ∈ Ob(C) the component ηX : F (X) → G(X) is a
morphism between objects of D, a λ-natural transformation from the functor F
to the functor G if

1. ωC(X) ∗ λ ≤ µD(ηX) for any X ∈ Ob(C) ;
2. ηY ◦ F (f) = G(f) ◦ ηX for any f ∈ MC(X,Y ).

One could try to define in a straightforward way that η is a λ-natural transfor-
mation if µ(ηX) ≥ λ for all x ∈ X, but in this case we run into the problem
that if a category contains a 0-object Y then µ(ηY ) = 0, since the degrees of
morphisms are bounded by its domain and codomain. This means that in such
a definition almost all natural transformations are 0-natural, unless 0-objects do
not exist in the fuzzy category.

There is one additional reason for giving natural transformations a condition
similar to the δ-functor condition on the degrees of membership of morphisms.
In classical category theory, natural transformations between functors are re-
spectively morphisms between functors in the category of functors. If we define
the degree of a δ-functor in this category to be δ, then we expect that the degree
of a natural transformation (morphism between functors) would not exceed the
minimum of the degrees of membership of the domain and codomain (functors).
This means that in the category of functors we expect µ(η) ≤ ω(F ) ∧ ω(G),
where η is a natural transformation from functor F to functor G. If the degree
of a functor in this category coincides with the largest δ and δ′, for which F is
a δ-functor and G is a δ′-functor, then µ(η) ≤ δ ∧ δ′. Moreover, since we are
dealing here with fuzzy categories for which the degree of membership of mor-
phisms is synced to the objects, we can unambiguously characterise the degree
of naturalness of η.

Proposition 6. If F : C → D is a δ1-functor, G : C → D is a δ2-functor,
η : F ⇒ G is a λ-natural transformation from F to G, then λ ≥ δ1 ∧ δ2.

Proof. Since ηX ∈ MD(F (X), G(X)), then by Proposition 1

µ(ηX) = ω(F (X)) ∧ ω(G(X)) ≥ (δ1 ∧ ω(X)) ∧ (δ2 ∧ ω(X)) = (δ1 ∧ δ2) ∧ ω(X).

So η is at least a (δ1 ∧ δ2)-natural transformation. ⊓⊔
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This implies that we would have λ = δ1 ∧ δ2 in the category of functors.
Now through the use of the unit and co-unit we can define adjoint functor

pairs naturally in fuzzy categories.

Definition 7. Suppose G : C → D is a δ-functor and F : D → C is a δ-functor.
The functors F and G form an α-adjoint functor pair (written as F ⊣α G) and
F is called the left adjoint of the functor G (respectively G is the right adjoint
of the functor F ) if

1. there exist α-natural transformations η : idD ⇒ GF and ε : FG ⇒ idC;
2. transformations η and ε satisfy the triangle equations, i.e. idF = εF ◦ Fη

and idG = Gε ◦ ηG.

Classical category theory contains a plentiful amount of theorems that guar-
antee the existence of adjoint functor pairs. Although our goal is to prove the
existence of a functor (left adjoint), it would be preferable its membership degree
would be guaranteed to some extent. Otherwise all resulting functors could be
just 0-functors and we would lose information about the degree of objects and
morphisms by transforming them with these functors.

3.2 Sufficient condition for an adjoint functor

While the notion of non-increasing was previously applied to functors, we can
now do so to objects from comma categories which are morphisms. The mem-
bership degrees of the objects in comma categories naturally are inherited from
the target category, i.e., if S : A → C and T : B → C are functors and S ↓ T is a
comma category, then then the membership degree for all objects (morphisms)
(A,B, h) of the comma category coincides with the degree of the morphism h
from the category C.

Definition 8. Suppose that A and B are fuzzy categories, F : C → B is a functor
and B is an object from the category B. We call an object (B,A, h) from the
comma category B ↓ F non-increasing if ω(A) ≥ ω(F (A))

Theorem 1. If G : A → B is a δ-functor and for any object B ∈ B in the
comma category B ↓ G there exists a non-increasing initial object (B,A, h) for
which µ(h) ≥ B ∧ δ, then there exists a δ-functor F : B → A such that F ⊣δ G.

Proof. The existence of the left adjoint F and the natural transformations η, ε
is a well known fact (see, e.g., [4]). All that remains is to show that the extra
conditions imposed in the formulation guarantee the degree of the functor and
adjoint pair.

First, let us note that η : idB ⇒ GF is a δ-natural transformation. This
follows because for each B ∈ C(B) we have ω(B,F (B), ηB) = µ(ηB) ≥ δ ∧ ω(B)
under the conditions of the theorem on the initial object. From this we can imply
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that GF is a δ-functor since

µ(GF (f)) ≥ µ(GF (f)) ∧ µ(f) = (ω(GF (B)) ∧ ω(GF (B′))) ∧ (µ(B) ∧ µ(B′))

= (ω(GF (B)) ∧ ω(B)) ∧ (ω(GF (B′)) ∧ ω(B′))

= µ(ηB) ∧ µ(ηB′)

≥ (δ ∧ ω(B)) ∧ (δ ∧ ω(B′)) = δ ∧ µ(f).

Now let us reason that F is a δ-functor. Suppose that f ∈ MB(B,B′) is
an arbitrary morphism. Since ηB and η′B are given to be non-increasing initial
objects of the comma category B ↓ G, we know that µ(F (f)) = ω(F (B)) ∧
ω(F (B′)) ≥ ω(GF (B)) ∧ ω(GF (B′)) = µ(GF (f)). Combining the with the fact
that GF is a δ-functor, we get that µ(F (f)) ≥ µ(GF (f)) ≥ δ ∧ µ(f), i.e., F is a
δ-functor.

Now it remains to show that ε : FG ⇒ idA is a δ-natural transformation.
Since F and G are δ-functors, then the composition FG is also a δ-functor. From
this we can infer that for each A ∈ C(A) we have µ(εA) = ω(A) ∧ ω(FG(A)) ≥
δ ∧ ω(A).

We conclude that F is a δ-functor such that F ⊣δ G. ⊓⊔

Similar to the way we can obtain a crisp functor from δ-functors for each
idempotent ι ≤ δ, we can obtain in such a way a class of crisp adjoint functor
pairs from a single pair of fuzzy adjoint functors.

Theorem 2. If F ⊣λ G is a λ-adjoint functor pair between the fuzzy categories
C and D, and F : D → C and G : C → D are λ-functors, then the restriction
of these functors to the threshold categories Fδ : Cλ → Dλ and Fλ : Cλ → Dλ

form a crisp adjoint functor pair Fλ ⊣ Gλ between the corresponding threshold
categories.

Proof. If F ⊣λ G is a λ-adjoint functor pair between categories C and D, then
by Proposition 2 Fλ and Gλ are functors between their respective threshold
categories Cλ and Dλ.

Now we just need to show the natural transformations that will form the
adjoint pair. Let η and ε be the λ-natural transformations, which are induced
by the λ-adjoint pair. If we consider the restriction of η to ηλ : idDλ

→ (GF )λ to
the functors idDλ

and (GF )λ, it suffices to show that for each component ηλ its
codomain is contained in the threshold category Dλ. Thus we would be able to
infer that ηλ is a crisp natural transformation.

Suppose that f ∈ MDλ
(X,X ′). Since µ(f) = ω(X) ∧ ω(X ′), then ω(X) ≥ λ

or X ∈ Dλ. In such case ω(GF (X)) ≥ λ∧ω(X) ≥ λ∧λ = λ, as in GF (X) ∈ Dλ.
Which means that all of the natural transformation diagrams still commute.

X (GF )λ(X)

X ′ (GF )λ(X
′)

f

(ηλ)X

(GF )λ(f)

(ηλ)X′
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With similar arguments about the domain, one can show that ελ : (FG)λ ⇒
idCλ

is a natural transformation. Furthermore, ηλ and ελ satisfy the triangle
equalities, because η and ε satisfy them and the degree of morphisms does not
decrease under composition (axiom of fuzzy categories).

We conclude that Fλ ⊣ Gλ. ⊓⊔

4 Conclusion

In this paper we have taken a step to further develop fuzzy category theory.
The current tools of crisp category theory cannot directly describe situations
where some local context is known of a model or even where we want to expand
the class of morphisms or objects by easing the restrictions on them whilst also
keeping track to what degree a potential object or morphism is a real object or
morphism. Although every single result that is true in crisp category theory is
also true in fuzzy category theory, the methods and transformations might not
respect the membership degree of objects and morphisms. Therefore new tools
have to be developed that guarantee (to a certain degree) that data will not
be lost. Currently we have only provided a sufficient condition for a left adjoint
functor that respects membership degrees up to a certain point. It still is an open
question if there is a necessary condition for this existence outside of the trivial
cases (1-functors and 0-functors). Furthermore, it remains to be seen how this
result can be further developed for locally small, complete categories using weak
initial objects. This would require a sensible definition of some sort of limits and
continuity which also respects membership degrees.

References

1. Chang, C.L.: Fuzzy topological spaces. Journal of Mathematical Analysis and Ap-
plications 24(1), 182–190 (1968). https://doi.org/10.1016/0022-247X(68)90057-7

2. Höhle, U.: Commutative, residuated L-monoids, pp. 53–106. Springer Netherlands,
Dordrecht (1995). https://doi.org/10.1007/978-94-011-0215-5_5

3. Lowen, R.: Fuzzy topological spaces and fuzzy compactness. Journal of Mathemat-
ical Analysis and Applications 56(3), 621–633 (1976). https://doi.org/10.1016/
0022-247X(76)90029-9

4. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, Springer New York (2013). https://doi.org/10.1007/978-1-4757-4721-8

5. Rosenfeld, A.: Fuzzy groups. Journal of Mathematical Analysis and Applications
35(3), 512–517 (1971). https://doi.org/10.1016/0022-247X(71)90199-5

6. Solovyov, S.A.: Fuzzy algebras as a framework for fuzzy topology. Fuzzy Sets and
Systems 173(1), 81–99 (2011). https://doi.org/10.1016/j.fss.2011.02.009

7. Zhang, D.X.: On the reflectivity and coreflectivity of L-fuzzifying topological spaces
in L-topological spaces. Acta Math Sinica 18, 55–68 (2002)

8. Zhang, D.X.: On the relationship between several basic categories in fuzzy topol-
ogy. Quaestiones Mathematicae 25(3), 289–301 (2002). https://doi.org/10.2989/
16073600209486016

9. Šostak, A.: Two decades of fuzzy topology: basic ideas, notions, and results. Russian
Mathematical Surveys 44, 125–186 (1989)

https://doi.org/10.1016/0022-247X(68)90057-7
https://doi.org/10.1016/0022-247X(68)90057-7
https://doi.org/10.1007/978-94-011-0215-5_5
https://doi.org/10.1007/978-94-011-0215-5_5
https://doi.org/10.1016/0022-247X(76)90029-9
https://doi.org/10.1016/0022-247X(76)90029-9
https://doi.org/10.1016/0022-247X(76)90029-9
https://doi.org/10.1016/0022-247X(76)90029-9
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1016/0022-247X(71)90199-5
https://doi.org/10.1016/0022-247X(71)90199-5
https://doi.org/10.1016/j.fss.2011.02.009
https://doi.org/10.1016/j.fss.2011.02.009
https://doi.org/10.2989/16073600209486016
https://doi.org/10.2989/16073600209486016
https://doi.org/10.2989/16073600209486016
https://doi.org/10.2989/16073600209486016


Functors in Fuzzy Category Theory 11

10. Šostak, A.: On a concept of a fuzzy category. In: 14th Linz Seminar on Fuzzy Set
Theory: Non- Classical Logics and Their Applications, Linz, Austria. pp. 63–66
(1992)

11. Šostak, A.: Fuzzy categories versus categories of fuzzily structured sets: Elements of
the the theory of fuzzy categories. Mathematik-Arbeitspapiere, Universität Bremen
(48), 407–438 (1997)

12. Šostak, A.: L-valued categories: generalities and examples related to algebra and
topology. In: Categorical Structures and Their Applications, pp. 291–311. World
Scientific (2004)


	Functors in Fuzzy Category Theory

