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Abstract. The resolution of bipolar equations with usual max-triangular
norm compositions (Gödel, product and  Lukasiewicz) and the standard
negation have been extensively studied. Recent theoretical advances ex-
tend the algebraic framework of bipolar equations to the context of non-
linear lattices, considering at the same time a general class of triangular
norms, an arbitrary involutive negation and a join-irreducible element
of the lattice as independent term. This paper studies the resolution of
bipolar inequations within the latter algebraic setting, which leads to an
alternative strategy to compute the solutions set of bipolar equations.
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1 Introduction

Bipolar fuzzy relation equations (BFRE), introduced by Freson et al. [14], have
been studied in some particular cases in the literature, including BFRE defined
with the standard negation and the max-min composition [14, 17, 18], the max-
product composition [3, 7] and the max- Lukasiewicz composition [19, 23, 24]. Ad-
ditionally, the particular case of BFRE defined with the product negation and
the max-product composition has also been studied in [5, 6].

Recently, a general kind of BFRE has been considered in [8], assuming a
non-linear carrier, an involutive negation and a sup-∗ composition being ∗ an
operator with residuum. To be precise, the underlying algebraic structure is
a complete distributive symmetric residuated lattice, i.e. complete distributive
residuated lattice endowed with an involutive negation. The key point of the
solving strategy followed in [8] is that the right-hand side of the BFRE is a
join-irreducible element of the underlying lattice.
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In this paper, we address the resolution of bipolar sup-∗ inequations defined
in complete distributive symmetric residuated lattices with join-irreducible right-
hand side. This study yields to a strategy to compute the complete solution set
of a bipolar sup-∗ equation, which is different from the one given in [8]. Since
BFRE are actually based on bipolar sup-∗ equations, this contribution will be
useful to take the first steps towards the solvability of BFRE with a join-reducible
right-hand side.

2 Preliminaries

This section includes some basic notions about lattice theory [1, 9, 15], which
play a key role in the resolution of a bipolar equation and the description of its
solution set [8]. To begin with, the definitions of complete lattice and distributive
lattice are shown.

Definition 1. Let (L,�) be a lattice. We say that:

• (L,�) is a complete lattice if
∨

S ∈ L and
∧

S ∈ L, for all S ⊆ L.
• (L,�) is a distributive lattice if, for all x, y, z ∈ L:

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

Note that, any complete lattice has a top and a bottom element, which will
be denoted as > and ⊥, respectively.

The solvability of bipolar equations in a complete distributive symmetric
residuated lattice was studied in [8], where two additional requirements are de-
manded: the condition of join-irreducible element for the right-hand side of the
equation and the condition of homomorphism of the underlying lattice for the
operator ∗. These concepts are formally defined below.

Definition 2. Let (L,�) be a complete lattice.

• An element x ∈ L is join-irreducible if x 6= ⊥ and x = a ∨ b implies x = a
or x = b, for all a, b ∈ L.
• A supremum (infimum) homomorphism is a mapping f : L → L which pre-

serves the supremum (infimum) of any nonempty subset, i.e. f(
∨
A) =∨

f(A) (f(
∧
A) =

∧
f(A)), for all A ∈ P(L) \ {∅}, where P(L) is the

powerset of L.
• A lattice homomorphism, or simply homomorphism, is a supremum and

infimum homomorphism.
• An involutive negation is an order-reversing mapping ¬ : L → L such that
¬¬x = x for all x ∈ L.

Observe that, the concept of lattice homomorphism in Definition 2, taken from [11],
does not coincide with the standard definition [1, 9], which only required to be
join-preserving and meet-preserving for pairs of elements of L.

Additionally, the usual definition of negation operator refers to any order-
reversing mapping ¬ : L → L satisfying the boundary conditions ¬> = ⊥ and
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¬⊥ = >. Indeed, such conditions hold for any involutive negation, so they are
properly omitted in Definition 2.

Considering a purely algebraic viewpoint, residuated lattices were presented
as a lattice endowed with a residuated pair [12]. Residuated pairs consist of two
binary operators capable of generalizing the philosophy of the Modus Ponens
inference rule [16].

Definition 3. A residuated lattice is a tuple (L,�, ∗,→) where (L,�) is a lat-
tice with top element >, (L, ∗,>) is a commutative monoid and (∗,→) is a
residuated pair, that is, for all x, y, z ∈ L:

x ∗ y � z if and only if x � y → z (1)

Equivalence (1) is called residuated property.

Although symmetric residuated lattices were firstly presented in [2], they
have newly been characterized in [8]. In this paper, we have chosen to define this
concept in terms of such characterization, for the sake of simplicity.

Definition 4. A tuple (L,�, ∗,→,¬) is a complete distributive symmetric resid-
uated lattice (CDSRL) if (L,�, ∗,→) is a complete distributive residuated lattice
and ¬ : L→ L is an involutive negation.

After recalling the previous lattice-theoretical notions, in order to make the
paper self-contained, we will present the formal definition of bipolar equation. A
detailed study about these equations and their solvability can be found in [8].

Definition 5. Let (L,�, ∗,→,¬) be a CDSRL, b a join-irreducible element of
L and a+j , a

−
j ∈ L, for each j ∈ {1, . . . ,m}. A bipolar equation with sup-∗

composition, or simply, a bipolar sup-∗ equation is an expression of the form:∨
j∈{1,...,m}

(a+j ∗ xj) ∨ (a−j ∗ ¬xj) = b (2)

where x1, . . . , xm ∈ L are unknown values.

Now, we will detail the notation employed to describe the solution set of
Equation (2). First of all, we consider the mappings → and  associated with
(L,�, ∗) which are defined as follows:

a→ b = max{x ∈ L | a ∗ x � b}
a b = inf{x ∈ L | b � a ∗ x}

These mappings were firstly introduced in [13]. It is convenient to mention that,
applying Equivalence (1), we obtain that → is the residuated implication of ∗.
In addition, the mapping  plays a key role in the description of the solutions
of a sup-∗ equation [10], and as a consequence, it is also useful for the case of
bipolar sup-∗ equations.

Consider the bipolar sup-∗ equation (2) and the natural extension of the
negation ¬, supremum ∨ and infimum ∧ operators, from L to Lm.
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• The sets S+ and S− are defined as

S+ = {j ∈ {1, . . . ,m} | b � a+j , a
+
j  b � a+j → b}

S− = {j ∈ {1, . . . ,m} | b � a−j , a
−
j  b � a−j → b}

• Given j ∈ {1, . . . ,m}, we define

s+j = (⊥, . . . ,⊥, a+j  b,⊥, . . . ,⊥)

s−j = (⊥, . . . ,⊥, a−j  b,⊥, . . . ,⊥)

where a+j  b, a−j  b correspond to the j-th position of s+j , s−j , respectively.

• The tuples g+ and g− belonging to Lm are defined as

g+ = (a+1 → b, . . . , a+m → b)
g− = (a−1 → b, . . . , a−m → b)

Finally, before presenting the analytic expression of the solution set of a
solvable bipolar sup-∗ equation, we recall that the unary mappings ∗x, ∗y : L→ L
given by ∗x(y) = x ∗ y and ∗y(x) = x ∗ y, for all x, y ∈ L, are called partial
mappings of ∗.

Theorem 1 ([8]). Let (L,�, ∗,→,¬) be a CDSRL such that the partial map-
pings of ∗ are homomorphisms. Let a+j , a

−
j ∈ L, for each j ∈ {1, . . . ,m}, and b a

join-irreducible element of L. If the bipolar sup-∗ equation (2) is solvable, then
its solution set is equal to

D =
( ⋃

j∈S+

[s+j ∨ ¬g
−, g+]

)
∪
( ⋃

j∈S−

[¬g−, g+ ∧ ¬s−j ]
)

As shown next, Theorem 1 leads to a simple necessary condition for the
solvability of a bipolar sup-∗ equation.

Corollary 1 ([8]). Let (L,�, ∗,→,¬) be a CDSRL such that the partial map-
pings of ∗ are homomorphisms. Let a+j , a

−
j ∈ L, for each j ∈ {1, . . . ,m}, and b a

join-irreducible element of L. If the bipolar sup-∗ equation (2) is solvable, then
the inequality ¬g− � g+ holds.

3 Bipolar inequations

The concept of bipolar inequation is formalized next. In order to extend the
philosophy of the solving strategies developed in [8] and [10], we assume here a
CDSRL as the underlying algebraic structure of bipolar inequations. Neverthe-
less, the mathematical requirements necessary to define this notion are weaker.
Namely, it suffices to consider a join semilattice.
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Definition 6. Let (L,�, ∗,→,¬) be a CDSRL and a+j , a
−
j , b ∈ L, for each j ∈

{1, . . . ,m}. A bipolar inequation with sup-∗ composition, or simply, a bipolar
sup-∗ inequation is an expression of the form:∨

j∈{1,...,m}

(a+j ∗ xj) ∨ (a−j ∗ ¬xj) � b (3)

or of the form:

b �
∨

j∈{1,...,m}

(a+j ∗ xj) ∨ (a−j ∗ ¬xj) (4)

where x1, . . . , xm ∈ L are unknown values.

In this paper, we will present some results concerning the resolution of bipo-
lar sup-∗ inequations of the form (3) and of the form (4). As it will be shown,
there is a marked difference between the form of the solution set of Inequa-
tion (3) and the form of the solution set of Inequation (4). Additionally, such
difference is transferred to the necessary or sufficient conditions of the solvability
of Inequations (3) and (4).

The next theorem shows the solution set of a bipolar sup-∗ inequation of the
form (3). The foundations of the theorem consists of splitting the expression∨

j∈{1,...,m}

(a+j ∗ xj) ∨ (a−j ∗ ¬xj) � b

into two parts, resulting in∨
j∈{1,...,m}

(a+j ∗ xj) ∨
∨

j∈{1,...,m}

(a−j ∗ ¬xj) � b

As a result, the solution set of Inequation (3) can be written as the intersection
of the solution set of ∨

j∈{1,...,m}

(a+j ∗ xj) � b

and the solution set of ∨
j∈{1,...,m}

(a−j ∗ ¬xj) � b

Theorem 2. Let (L,�, ∗,→,¬) be a CDSRL and b a join-irreducible element
of L. If the partial mappings of ∗ are supremum-morphisms, then the solution
set of Inequation (3) is [¬g−, g+].

Observe that, if Inequation (3) is not bipolar, i.e. aj = ⊥ for all j ∈ {1, . . . ,m},
then Theorem 2 implies that its solution set is [0, g+], being 0 = (⊥, . . . ,⊥).
Clearly, this particular case coincides with Proposition 16 of [10].

An interesting consequence of Theorem 2 is that, the solution set of Inequa-
tion (3) is not empty if and only if ¬g− � g+. In other words, the solvability of
Inequation (2) is characterized by the satisfiability of such inequality.
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Proposition 1. Let (L,�, ∗,→,¬) be a CDSRL and b a join-irreducible element
of L. If the partial mappings of ∗ are supremum-morphisms, Inequation (3) is
solvable if and only if ¬g− � g+.

Naturally, the bipolar sup-∗ equation (2) inherits the inequality ¬g− � g+ as
a necessary condition of its solvability. Indeed, this result coincides with Corol-
lary 1.

In what regards the resolution of the bipolar sup-∗ inequation (4), notice
that

b �
∨

j∈{1,...,m}

(a+j ∗ xj) ∨ (a−j ∗ ¬xj)

if and only if b � (a+j ∗ xj) ∨ (a−j ∗ ¬xj) for some j ∈ {1, . . . ,m}. Equivalently,

b � (a+j ∗ xj) or b � (a−j ∗ ¬xj) for some j ∈ {1, . . . ,m}. Hence, the solution set
of Inequation (4) coincides with the union of the solution set of all inequalities
of the form b � (a+j ∗ xj) and b � (a−j ∗ ¬xj), where j ∈ {1, . . . ,m}.

For the sake of readability, consider fixed the sets

S⊕ = {j ∈ {1, . . . ,m} | b � a+j }
S	 = {j ∈ {1, . . . ,m} | b � a−j }

Besides, given j ∈ {1, . . . ,m}, we define

s+j = (⊥, . . . ,⊥, a+j  b,⊥, . . . ,⊥)

s−j = (⊥, . . . ,⊥, a−j  b,⊥, . . . ,⊥)

where a+j  b, a−j  b correspond to the j-th position of s+j , s−j , respectively.

Theorem 3. Let (L,�, ∗,→,¬) be a CDSLR and b a join-irreducible element
of L. If the partial mappings of ∗ are infimum-morphisms, the solution set of
Inequation (4) is:  ⋃

j∈S⊕

[s+j , 1]

 ∪
 ⋃

j∈S	

[0,¬s−j ]


Although the analytic form of the solution set of Inequation (4) is consid-

erably more complex than the solution set of Inequation (3), the existence of
solutions of Inequation (4) can be characterized in a simple manner in terms of
its coefficients.

Proposition 2. Let (L,�, ∗,→,¬) be a CDSRL and b a join-irreducible element
of L. If the partial mappings of ∗ are infimum-morphisms, Inequation (4) is
solvable if and only if there exists j ∈ {1, . . . ,m} such that b � a+j or b � a−j .

Clearly, due to the reflexivity and the antisymmetry of the partial order �,
the next statement holds:

a = b if and only if a � b and b � a
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Hence, the solution set of Equation (2) can be written as the intersection of
the solution sets of Inequations (3) and (4). It is important to highlight that
this strategy was already used to solve sup-∗ equations in complete distributive
residuated lattices [10].

According to Theorems 2 and 3, the solution set of Equation (2) equals:

[¬g−, g+] ∩

 ⋃
j∈S⊕

[s+j , 1]

 ∪
 ⋃

j∈S	

[0,¬s−j ]


(1)
=

[¬g−, g+] ∩
⋃

j∈S⊕

[s+j , 1]

 ∪
[¬g−, g+] ∩

⋃
j∈S	

[0,¬s−j ]


(2)
=

 ⋃
j∈S⊕

[¬g−, g+] ∩ [s+j , 1]

 ∪
 ⋃

j∈S	

[¬g−, g+] ∩ [0,¬s−j ]


(3)
=

 ⋃
j∈S⊕

[¬g− ∨ s+j , g
+ ∧ 1]

 ∪
 ⋃

j∈S	

[¬g− ∨ 0, g+ ∧ ¬s−j ]


(4)
=

 ⋃
j∈S⊕

[¬g− ∨ s+j , g
+]

 ∪
 ⋃

j∈S	

[¬g−, g+ ∧ ¬s−j ]


where (1) is obtained by the distributivity of (L,�), (2) by De Morgan’s laws, (3)
by the intersection of intervals and (4) by the inequalities g+ � 1 and 0 � ¬g−.

Note that, the latter expression in the chain of equalities coincides with the
solution set given in Theorem 1, except for the expression of the index sets
S⊕, S	 and S+, S−, respectively. However, it can be is easily seen that given
j ∈ S⊕ \ S+, the interval [¬g− ∨ s+j , g

+] is empty. Equivalently, the interval

[¬g−, g+ ∧ ¬s−j ] is empty for each j ∈ S	 \ S−. Hence, both expressions are
actually equivalent.

Next example illustrates how to compute the solution set of bipolar equations
by using the approach introduced in this paper.

Example 1. Let ([0, 1],≤,∧,→∧,¬S) be a CDSRL composed of the Gödel resid-
uated pair and the standard negation, which are defined as:

a ∧ b = min{a, b} a→∧ b =

{
1 if a ≤ b

b otherwise
¬Sa = 1− a

for all a, b ∈ [0, 1], and ∧ : [0, 1]×[0, 1]→ [0, 1] be a mapping defined as follows:

a ∧ b = inf{x ∈ [0, 1] | b ≤ a ∧ x} =

{
b if b ≤ a

1 otherwise
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for all a, b ∈ [0, 1]. Consider the bipolar equation with max-min composition
given below:

(0.4∧x1)∨(0.5∧¬Sx1)∨(0.6∧x2)∨(0.4∧¬Sx2)∨(0.7∧x3)∨(0.8∧¬Sx3) = 0.6 (A)

Next bipolar inequations need to be solved in order to obtain the solution set of
Equation (A):

(0.4∧x1)∨ (0.5∧¬Sx1)∨ (0.6∧x2)∨ (0.4∧¬Sx2)∨ (0.7∧x3)∨ (0.8∧¬Sx3) ≤ 0.6

0.6 ≤ (0.4∧x1)∨ (0.5∧¬Sx1)∨ (0.6∧x2)∨ (0.4∧¬Sx2)∨ (0.7∧x3)∨ (0.8∧¬Sx3)

From now on, the previous bipolar inequations will be labelled as Inequations
(A1) and (A2), respectively. It is easy to see that the hypothesis required in
Theorems 2 and 3 are satisfied, and as a consequence:

• The solution set of Inequation (A1) is [¬Sg−, g+] = [(0, 0, 0.4), (1, 1, 0.6)].

g+ = (0.4→∧ 0.6, 0.6→∧ 0.6, 0.7→∧ 0.6) = (1, 1, 0.6)

g− = (0.5→∧ 0.6, 0.4→∧ 0.6, 0.8→∧ 0.6) = (1, 1, 0.6)

¬Sg− = (¬S1,¬S1,¬S0.6) = (0, 0, 0.4)

• The solution set of Inequation (A2) is
(⋃

j∈S⊕ [s+j , 1]
)
∪
(⋃

j∈S	 [0,¬s−j ]
)

.

Considering the next index sets

S⊕ = {j ∈ {1, 2, 3} | 0.6 � a+j } = {2, 3}
S	 = {j ∈ {1, 2, 3} | 0.6 � a−j } = {3}

and the following tuples

s+2 = (0, a+2  ∧ b, 0) = (0, 0.6 ∧ 0.6, 0) = (0, 0.6, 0)
s+3 = (0, 0, a+3  ∧ b) = (0, 0, 0.7 ∧ 0.6) = (0, 0, 0.6)
s−3 = (0, a−3  ∧ b, 0) = (0, 0, 0.8 ∧ 0.6) = (0, 0, 0.6)

we have that ⋃
j∈S⊕

[s+j , 1]

 ∪
 ⋃

j∈S	

[0,¬s−j ]


= ([(0, 0.6, 0), (1, 1, 1)] ∪ [(0, 0, 0.6), (1, 1, 1)]) ∪ [(0, 0, 0),¬S(0, 0, 0.6)]

= ([(0, 0.6, 0), (1, 1, 1)] ∪ [(0, 0, 0.6), (1, 1, 1)]) ∪ [(0, 0, 0), (1, 1, 0.4)]

Lastly, computing the intersection of the solution sets of Inequations (A1)
and (A2), we obtain the solution set of Equation (A), that is:

[(0, 0.6, 0.4), (1, 1, 0.6)] ∪ [(0, 0, 0.6), (1, 1, 0.6)] ∪ [(0, 0, 0.4), (1, 1, 0.4)]
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4 Conclusions and future work

We have studied the resolution of bipolar inequations in CDSRL with a join-
irreducible element as independent term, providing the form of their complete
solution set. This study has given rise to an alternative strategy in order to
compute the solution set of bipolar equations in CDSRL.

As a future work, we are interested in addressing the solvability of bipolar
equations in CDSRL whose independent term is a join-reducible element of the
lattice, including the characterization of the solvability, the analytic form of the
solution set and the algebraic structure of the solution set.
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