
Enhancing Bayesian Network Structural Learning
with Monte Carlo Tree Search

Jorge D. Laborda1,2[0000−0002−6844−3970], Pablo Torrijos1,2[0000−0002−8395−3848],
José M. Puerta1,2[0000−0002−9164−5191], and José A.

Gámez1,2[0000−0003−1188−1117]

1 Instituto de Investigación en Informática de Albacete (I3A). Universidad de
Castilla-La Mancha. Albacete, 02071, Spain.

2 Departamento de Sistemas Informáticos. Universidad de Castilla-La Mancha.
Albacete, 02071, Spain.

{JorgeDaniel.Laborda,Pablo.Torrijos,Jose.Puerta,Jose.Gamez}@uclm.es

Abstract. This article presents MCTS-BN, an adaptation of the Monte
Carlo Tree Search (MCTS) algorithm for the structural learning of
Bayesian Networks (BNs). Initially designed for game tree exploration,
MCTS has been repurposed to address the challenge of learning BN
structures by exploring the search space of potential ancestral orders in
Bayesian Networks. Then, it employs Hill Climbing (HC) to derive a
Bayesian Network structure from each order. In large BNs, where the
search space for variable orders becomes vast, using completely random
orders during the rollout phase is often unreliable and impractical. We
adopt a semi-randomized approach to address this challenge by incor-
porating variable orders obtained from other heuristic search algorithms
such as Greedy Equivalent Search (GES), PC, or HC itself. This hybrid
strategy mitigates the computational burden and enhances the reliability
of the rollout process. Experimental evaluations demonstrate the effec-
tiveness of MCTS-BN in improving BNs generated by traditional struc-
tural learning algorithms, exhibiting robust performance even when base
algorithm orders are suboptimal and surpassing the gold standard when
provided with favorable orders.

Keywords: Monte Carlo Tree Search · Bayesian Network · Structural
Learning.

1 Introduction

Bayesian Networks (BNs) [10,14] are probabilistic graphical models that cap-
ture complex dependencies among variables, enabling the representation of un-
certainty in specific domains. Known for their intuitive graphical structures,
BNs facilitate symbolic analysis of variable relationships. In an era where inter-
pretable models and causal modeling are gaining significance, BNs are considered
cutting-edge technology. They find applications in various domains, from med-
ical purposes [18,29] to forest fire analysis [24] or risk assessment [6], making
them valuable for automated decision-making.

2 JD. Laborda, P. Torrijos, JM. Puerta and JA. Gámez

In addressing complex problems, the conventional approach of expertly craft-
ing graphical structures and conditional probability tables for BNs becomes im-
practical [12]. The field of BN structural learning, which delves into discovering
underlying probabilistic connections between variables in complex systems, has
made notable strides over the years [1,5,7,21].

This work introduces MCTS-BN, the Monte Carlo Tree Search (MCTS)
[13,30] application for BN structural learning. Initially designed for board games,
MCTS shows promise due to its ability to balance exploration and exploitation.
We adapt MCTS for BN structural learning by representing network variables
in the search tree, looking for a suitable order for the variables to facilitate using
a fast learning algorithm limited to a specific order, such as Hill Climbing (HC)
[7]. This is necessary due to the huge number of times that this algorithm has
to be executed during the MCTS exploration.

However, BNs face the challenge of a vast search space for variable orders,
n! with n variables. Random exploration during MCTS becomes inefficient and
unreliable. To address this, we propose a hybrid strategy combining randomness
with topological orders derived from standard greedy algorithms like HC itself,
Greedy Equivalent Search (GES) [5], or the PC algorithm [27]. This approach
enhances exploration efficiency and reliability.

Our findings underscore the effectiveness of this approach, particularly in
scenarios where base algorithms yield suboptimal results and where MCTS has
more room for improvement. We delve into how the results vary with the different
base algorithms over the iterations. In addition, it is shown that the better the
ancestral order with which it is initialized, the shorter the execution time.

This paper is organized as follows. Section 2 provides the necessary back-
ground, covering Bayesian Networks, their structural learning, and Monte Carlo
Tree Search. In Section 3, our proposal for adapting MCTS for BN structural
learning is explained in detail. Then, Section 4 details the methodology used for
the experimental evaluation and analyses the obtained results. Finally, Section
5 summarizes our contributions, and we discuss potential future research.

2 Preliminaries

2.1 Bayesian Network

A Bayesian Network (BN), formally represented as B = (G,P), constitutes a
probabilistic graphical model with two fundamental components: a Directed
Acyclic Graph (DAG) denoted as G = (X ,A), and a set of Conditional Probabil-
ity Tables (CPTs) denoted as P. The DAG G = (X ,A) encapsulates the network
structure, where X = {X1, . . . , Xn} represents the variables of the problem do-
main, and A = {Xi → Xj | Xi, Xj ∈ X ∧Xi ̸= Xj} denotes the directed edges
between them. The CPTs (P) factorize the joint probability distribution P (X)
using graphical structure G and the Markov’s condition:

P (X) = P (X1, . . . , Xn) =

n∏
i=1

P (Xi|paG(Xi)), (1)

Enhancing BN Structural Learning with MCTS 3

where paG(Xi) denotes the set of parents of Xi in G.

2.2 Structural Learning of Bayesian Networks

Structural learning of Bayesian Networks (BNs) [22] is a crucial task involving
discovering the optimal network topology to represent the underlying proba-
bilistic relationships among variables accurately. Learning the structure of a BN
is an NP-hard problem [22]. Therefore, heuristic methods are used when the
dimensionality of the problem domain increases.

Two main groups of algorithms exist in the realm of structural learning for
BNs. On one hand, constraint-based algorithms, like the PC algorithm [27],
employ hypothesis testing to derive conditional independencies between variables
based on the available data. On the other hand, score+search algorithms explore
the space of potential BNs using a metric dependent on the data. In this context,
we specifically consider discrete data.

Among the score+search algorithms, Hill Climbing (HC) [7] and Greedy
Equivalent Search (GES) [5] are notable. Both algorithms operate similarly,
with the distinction that HC searches within the space of DAGs while GES
explores the space of equivalence classes. This makes HC faster, but it generally
yields inferior results. Additionally, Fast GES (fGES) [21] deserves mention as
an enhancement of GES designed to better adapt to high-dimensional domains.

2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) [13,30] is a versatile best-first search algo-
rithm designed for sequential decision-making tasks, combining the Monte Carlo
simulation with tree search. Originally designed for game-playing scenarios, an
area in which it has excelled, e.g., with AlphaGo [25] and AlphaZero [26], MCTS
has found applications in diverse domains such as molecular design [3,11], re-
newable energies [2], autonomous vehicles [19] or optimization [15]. Its ability
to efficiently navigate extensive search spaces while balancing exploration and
exploitation positions it as a powerful tool in diverse domains.

In a formal context, MCTS is well-suited for problems modeled by a Markov
Decision Process (MDP) [9]. A MDP is defined as a tuple (S,AS , Pa, Ra) where:

– S = {S0, . . . , Sn} is the state space, i.e., a set of possible states. S0 is distin-
guished as the initial state.

– AS is the actions space, i.e., the set of possible actions available to perform
in the state S.

– Pa(Si, Sj) is the transition function, i.e., the probability that action a in
state Si will lead to Sj .

– Ra(S) is the reward of reaching the state S by the action a.

In MCTS, the state space S is explored by iteratively building a search tree.
Each node in these trees represents a potential state or configuration S of the
problem, starting with the root node corresponding to the initial state S0. In

4 JD. Laborda, P. Torrijos, JM. Puerta and JA. Gámez

contrast, the edges between states correspond to each action aS successively
done in each node S to achieve the final state. The algorithm evaluates possible
sequences of actions, assessing their outcomes through random sampling.

During this exploration process, the search tree dynamically adapts based on
the acquired information, including simulation rewards and the number of visits
to each node. The method seeks to balance exploration and exploitation to select
the best action in each moment, discovering promising branches of the search
tree while refining evaluations of less explored ones. To achieve this balance,
the algorithm normally employs the Upper Confidence bounds applied to Trees
(UCT) [13] formula:

UCTa(S) = avg(Ra(S)) + C ·

√
lnN(S)

Na(S)
(2)

where UCTa(S) is the score obtained when action a is performed in state S;
avg(Ra(S)) is the mean reward obtained thus far when performing a in S; C is a
constant controlling the balance between exploration and exploitation (typically
set to

√
2 by default); N(S) is the total number of simulations in state S; and

Na(S) is the number of simulations in S when action a is performed.
MCTS follows a four-step cycle of iterations that can be stopped at any time,

returning the best solution found so far:

– Selection: Starting from the root node, MCTS selects a path through the
tree using a selection strategy, such as UCT, until it reaches a leaf node or
a terminal state.

– Expansion: Upon reaching a leaf node, MCTS expands the tree by adding
at least one child node, the result of applying a new action to the state.

– Simulation (Rollout): MCTS conducts a complete random simulation
from the newly added node until reaching a terminal state to estimate the
outcome of the problem.

– Backpropagation: The simulation results are backpropagated up the tree,
from the leaf to the root node, updating the statistics of all middle nodes.

Challenges in applying MCTS include fine-tuning parameters, handling large
state spaces, and addressing computational demands. Researchers have devel-
oped various MCTS variants to suit the intrinsic characteristics of each problem,
such as parallel MCTS [4], multi-objective MCTS [20,28], real-time MCTS [20],
or using a graph instead of a tree as in Monte Carlo Graph Search (MCGS) [16].

3 MCTS for Structural Learning of BNs

In this section, we provide an in-depth exploration of how Monte Carlo Tree
Search is applied to the problem of structural learning in Bayesian Networks.

Enhancing BN Structural Learning with MCTS 5

3.1 Searching topological orders

A topological order of a Bayesian network is an ordered list σ = ⟨Xi, . . . , Xj⟩ of
the n BN variables X = {X1, . . . , Xn}, such that all the parents of any X ∈ X
precede X in σ. Note that, in general, there are several topological orders for a
given DAG. Within this modified version of MCTS, the algorithm’s objective is
to explore the topological order σ of the BN variables that maximizes the score
obtained by a structural learning algorithm constrained to follow σ. Since the
problem of structural learning of BNs is NP-hard, commonly used algorithms
are greedy methods that perform a local search in a subset of the state space.
Therefore, providing an order σ as similar as possible to the topological order
induced by the underlying distribution of the data will allow us to obtain better
solutions than those obtained by the unconstrained algorithm.

Our approach, MCTS-BN, employs a Hill Climbing algorithm constrained to
a specific σ [17] due to its simplicity and fast execution time while maintaining
good results. This choice is particularly relevant in our context as the algorithm
needs to be executed numerous times (once in each rollout step of MCTS). As for
the scoring metric, we utilize the Bayesian Dirichlet equivalent uniform (BDeu)
score [8], a widely adopted metric in the history of score-based BN structural
learning algorithms [1,5,7], owing to its properties that guarantee that is a locally
consistent scoring criterion [5].

In this case, the MCTS search space S = {σ0, σ1, . . . } will consist of each
possible (partial) order of the variables. Note that while the search space size for
complete orders is n!, the search space in the case of partial orders is much larger,∑n

k=0 k!
(
n
k

)
. Let us denote vars(σ) as the set of variables in σ. In our proposal,

an action consists of adding a new variable to a state, i.e., a partial order σi.
Thus, by abuse of the notation, we use sets of variables as sets of actions, being
Aσi = X \ vars(σi) the actions set available at a state σi.

The method starts with the initial state σ0 being an empty order ⟨⟩. New
nodes (states) are added to the tree by applying a possible action Xj ∈ Aσi

over a node (state) σi, that is, by adding Xi at the end of the partial order
σi. For example, at the first level, the possible states (partial orders) will be
{⟨Xi⟩}ni=1 since Aσ0 = X ; at the second level, the state ⟨Xi⟩ is expanded to
the set {⟨Xi, Xj⟩}j ̸=i; and so on for the rest of levels. When σ contains the n
variables, it is a complete order and, therefore, a final state.

During the rollout, an incomplete order σ is evaluated by extending it with
all the variables in X \vars(σ). This creates a complete order σ+. Subsequently,
a BN is learned using an HC algorithm restricted to the topological ordering
represented by σ+, and the score attained by the obtained network is employed
in the scoring process of σ.

3.2 UCT adaptation

When applying MCTS for structural learning of BNs, adapting certain aspects
is crucial to ensure that the UCT formula (Eq. 2) yields useful values because
of the different scales in the score that we use as reward Ra(S) (BDeu) due to
the dataset size and the network (domain). We manage these issues as follows:

6 JD. Laborda, P. Torrijos, JM. Puerta and JA. Gámez

– Since the metric is proportional to the dataset size, we divide the BDeu score
by the number of instances to deal with different dataset sizes. We denote
this normalized BDeu value as nBDeu.

– As the scale of BDeu significantly differs between different domains, and
it cannot be predicted from domain features (e.g. number of variables), we
propose standardizing it once the algorithm has started. To do this, we have
to test each possible action Aσ0

= X at the initial state σ0, so considering
each variable as the first variable of order σ. This provides an overview
of the nBDeu score scale for the current BN. Subsequently, the mean and
standard deviation of the obtained scores are calculated and used to (zero-
mean standardize) any reward computed during the algorithm’s running,
including those in this initial iteration. In this way, we ensure that a uniform
scale is always maintained. We denote this standardized nBDeu as snBDeu.

Finally, adapting the UCT to the BN learning problem also involves adjust-
ing the exploration constant C. The typical value of

√
2 for C might be too large

in this context, especially considering that the rewards have been standardized,
resulting in smaller values. Using the standard

√
2 might overly prioritize explo-

ration. We opt to set C =
√
2

100 as it strikes a good balance between exploration
and exploitation. Therefore, the modified UCT algorithm will be:

UCTa(S) = avg(snBDeua(S)) +

√
2

100
·

√
lnN(S)

Na(S)
(3)

3.3 Guided search

As aforementioned, a significant challenge in adapting MCTS for structural
learning of BNs is the vast search space S, where most of the n! final states
may lead to far from optimal solutions, making it difficult for MCTS to discover
good orderings (and BNs) efficiently. Incorporating algorithms like HC in the
MCTS evaluations becomes intricate, making it impossible to feasibly run mil-
lions or billions of iterations as seen in other MCTS implementations [25,26].
Therefore, starting from a knowledge base to exploit existing information be-
comes particularly important to make the most of the iterations carried out.

For this purpose, before running the MCTS algorithm, an unconstrained
greedy structural learning algorithm, such as, e.g., GES, PC, or HC, is executed
to discover an initial BN. Then, several topological orders are sampled from
the learned BN to achieve diversity. We denote these orders as σGES , σHC or
σPC , depending on the learning algorithm employed. For example, let us assume
that the BN shown in Figure 1a has been learned using the GES algorithm.
Then, different σGES orders extracted from it are ⟨X1, X7, X2, X3, X5, X6, X4⟩,
⟨X1, X7, X4, X2, X5, X3, X6⟩, ⟨X1, X4, X7, X2, X5, X3, X6⟩, etc.

These orders serve two primary purposes. Firstly, they guide the pro-
cess of completing incomplete orders for the rollout, that is, obtaining σ+

from σ in an informed way instead of randomly. Thus, given σ to be
complete and e.g. σGES sampled from the learnt BN, we obtain σ+ =

Enhancing BN Structural Learning with MCTS 7

X1

X4 X7

X2 X5

X3 X6

(a) BN learned with GES.

X1σGES : X4 X7 X2 X5 X3 X6

X5σ: X1 X2 X1 X1 X1 X1

X5σ+: X1 X2 X4 X7 X3 X6

(b) Topological orders.

Fig. 1: Example of σ+ construction from σ and a σGES from a BN.

σ · σ↓X\vars(σ)
GES , where · is the concatenation operator and σ↓A

i produces
the projection of σi over A, that is, the partial order obtained by re-
moving from σ the variables not in A. Following the example in Figure
1b, if σ = ⟨X5, X1, X2⟩, and σGES = ⟨X1, X4, X7, X2, X5, X3, X6⟩, then
σ+ = ⟨X5, X1, X2⟩ · ⟨X1, X4, X7, X2, X5, X3, X6⟩↓{X3,X4,X6,X7} = ⟨X5, X1, X2⟩ ·
⟨X4, X7, X3, X6⟩ = ⟨X5, X1, X2, X4, X7, X3, X6⟩. This avoids closing promising
paths due to bad luck by generating a bad random order.

The second use of these BN-sampled topological orders is for node expansion.
Whether we consistently follow the same order of possible actions or opt for a
random one each time we expand a state σ, there’s a risk of selecting sink nodes
very early in the order, leading to significantly suboptimal scores. This, in turn,
reduces the likelihood of revisiting the expansion of state σ even though it might
be very promising. To avoid this, each state σ will have attached a σGES order
that dictates the sequence in which each of its Aσ actions will be expanded.

4 Experimental evaluation

4.1 Methodology

The following outlines our methodology for evaluating the MCTS-BN algorithm.
We selected 6 real-world BNs from bnlearn’s Bayesian Network Repository3[23],
three of small size (Alarm, Barley, and Hepar2) and three of very large size
(Diabetes, Link, and Munin). Each original network is considered as the gold
standard for the corresponding domain. Subsequently, we sampled each BN to
generate 10 datasets for each network, each one having 5000 instances.

The evaluation metrics for assessing the quality of solutions include the BDeu
score and the execution time averaged over the runs for the 10 datasets sampled
for each BN. These metrics are assessed for both the structural learning algo-
rithms (GES, fGES, PC, and HC), which establish the foundation for obtaining
the orders utilized by MCTS, and are also measured at each of the 10000 iter-
ations carried out by the MCTS algorithm. It is important to note that these
10000 iterations are counted after the first complete expansion, which is always
3 https://www.bnlearn.com/bnrepository/

https://www.bnlearn.com/bnrepository/

8 JD. Laborda, P. Torrijos, JM. Puerta and JA. Gámez

Table 1: Bayesian networks used in the experiments.

Network Features

Nodes # Edges # Parameters Max. parents Avg. degree

Alarm 37 46 509 4 2.49
Barley 48 84 114 005 4 3.5
Hepar2 70 123 1 453 6 3.51

Diabetes 413 602 429 409 2 2.92
Link 724 1 125 14 211 3 3.11
Munin 1 041 1 397 80 592 3 2.68

carried out from the initial state σ0, and that is depicted separately in the graphs
shown in Section 4.3. Furthermore, a topological order sampled from each gold
standard BN is used to run an HC algorithm restricted to it. The outcome of this
execution should be the optimal network as it uses the (an) actual topological
ordering among the variables, thus it constitute an excellent model to compare
with. As shown in our experiments, our algorithm sometimes obtains a better
value because when considering a limited data set, the gold standard may no
longer be the optimal model for that data.

4.2 Reproducibility

All code has been implemented using Java (OpenJDK 17) and the causal reason-
ing library Tetrad 7.1.2-24. The fGES and PC implementations used are those
of Tetrad. In contrast, the GES implementation corresponds to an improved
version [1]. HC and MCTS have been implemented from scratch. To ensure the
reproducibility of the experiments, all of the datasets and the code are provided
at GitHub 5. In addition, all the datasets generated for each BN are available at
OpenML6. Regarding hardware, all the experiments were performed on machines
with Intel Xeon E5-2650 8-Core Processors with 64 GB of RAM per execution.

4.3 Results

Figure 2 illustrates the evolution of the BDeu score for MCTS-BN across itera-
tions using the GES, fGES, PC, and HC algorithms as a basis. The left half of
the figure showcases the evolution during the complete expansion of σ0 as a per-
centage relative to the number of variables in each BN. In contrast, the right half
displays the BDeu evolution over the 10000 MCTS iterations performed. Addi-
tionally, a dashed line represents the BDeu obtained by each algorithm used as
a basis, accompanied by a red solid line marking the HC result restricted to the
order obtained from the gold standard.

4 https://github.com/cmu-phil/tetrad/releases/tag/v7.1.2-2
5 https://github.com/ptorrijos99/MCTS-BN
6 https://www.openml.org/search?type=data&uploader_id=%3D_33148&tags=bnlearn

https://github.com/cmu-phil/tetrad/releases/tag/v7.1.2-2
https://github.com/ptorrijos99/MCTS-BN
https://www.openml.org/search?type=data&uploader_id=%3D_33148&tags=bnlearn

Enhancing BN Structural Learning with MCTS 9

12.5

12.0

11.5

11.0
BD

eu
 s

co
re

Network = alarm

65

60

55

Network = barley

33.4

33.2

33.0

Network = hepar2

0 25% 50% 75% 1 2500 5000 750010000
Iterations

500

400

300

BD
eu

 s
co

re

Network = diabetes

0 25% 50% 75% 1 2500 5000 750010000
Iterations

300

250

Network = link

0 25% 50% 75% 1 2500 5000 750010000
Iterations

260

240

220

200

Network = munin

Algorithm
GES
fGES
HC
PC

Fig. 2: nBDeu score obtained by MCTS-BN over the iterations.

10.84

10.82

10.80

10.78

BD
eu

 s
co

re

Network = alarm

53.25

53.00

52.75

52.50

52.25

Network = barley

32.99

32.98

32.97

32.96

Network = hepar2

0 25% 50% 75% 1 2500 5000 750010000
Iterations

280

260

240

BD
eu

 s
co

re

Network = diabetes

0 25% 50% 75% 1 2500 5000 750010000
Iterations

280

260

240

Network = link

0 25% 50% 75% 1 2500 5000 750010000
Iterations

186.5

186.0

185.5

185.0

Network = munin
Algorithm

GES
fGES

Fig. 3: nBDeu score obtained by MCTS-BN over the iterations (GES, fGES).

Given the considerable variability in the scale of the results for the different
algorithms, we present Figures 3 and 4, which depict the same data but exclu-
sively for the GES and fGES algorithms and only for GES, respectively. This
presentation can be understood as a kind of zoom and allows for a clearer ap-
preciation of the evolution using these specific algorithms as a basis. The results
lead to the following conclusions:

– The use of MCTS-BN consistently proves beneficial across all base networks
and algorithms used, notably enhancing the starting BDeu score results.

– In cases where the base algorithm generates suboptimal networks (as ob-
served with HC, PC, and fGES in Diabetes and Link), MCTS-BN exhibits
significant improvement potential. However, achieving results comparable to
a good basic structural learning algorithm like GES becomes more challeng-
ing with worse starting conditions, particularly in larger BNs.

– In scenarios with small performance differences, such as in Alarm with fGES
outperforming GES, MCTS-BN demonstrates the capability to achieve sim-
ilar final results regardless of the chosen base algorithm.

– MCTS-BN, when coupled with a robust base algorithm like GES, performs
exceptionally well, surpassing the gold standard’s upper bound in 4/6 BNs.

10 JD. Laborda, P. Torrijos, JM. Puerta and JA. Gámez

10.84

10.82

10.80

10.78
BD

eu
 s

co
re

Network = alarm

53.00

52.75

52.50

52.25
Network = barley

32.965

32.960

32.955

Network = hepar2

0 25% 50% 75% 1 2500 5000 750010000
Iterations

226.4

226.2

226.0

BD
eu

 s
co

re

Network = diabetes

0 25% 50% 75% 1 2500 5000 750010000
Iterations

228

227

226

225
Network = link

0 25% 50% 75% 1 2500 5000 750010000
Iterations

186.5

186.0

185.5

185.0

Network = munin Algorithm
GES

Fig. 4: nBDeu score obtained by MCTS-BN over the iterations (GES).

GES fGES HC PC
Base Algorithm

0

10

20

30

Ti
m

e
(s

)

Network = alarm

GES fGES HC PC
Base Algorithm

0

25

50

75

100
Network = barley

GES fGES HC PC
Base Algorithm

0

10

20

30

40

Network = hepar2

GES fGES HC PC
Base Algorithm

0

2000

4000

6000

Network = diabetes

GES fGES HC PC
Base Algorithm

0

2500

5000

7500

10000

Network = link

GES fGES HC PC
Base Algorithm

0

5000

10000

15000

20000

Network = munin

Time
Base
MCTS

Fig. 5: Execution time (seconds) of the base algorithms and the posterior MCTS-BN.

Obviously, the goal of this method is not to compare CPU time with greedy
algorithms. However, we find it of interest to analyze it. Figure 5 shows the
average times for each BN using GES, fGES, HC, and PC as the base algorithm.
Each bar is further divided between the time of the base algorithm itself and that
of the MCTS search. It illustrates that the MCTS time remains reasonable even
with over 10000 runs of the limited HC. Additionally, it highlights the impact of
the order generated by the base structural learning algorithm, especially evident
in Diabetes, Link, and Munin with HC and PC as the base algorithms. Thus,
GES emerges not only as the algorithm with the best results but also as the one
with the most favorable ratio of these results concerning execution time.

5 Conclusions

Our study presents MCTS-BN, an adaptation of the Monte Carlo Tree Search
for structural learning in Bayesian Networks. MCTS-BN conducts exploration
within the search space of potential ancestral orders of the BN. A fast Hill Climb-
ing constrained to a given order is executed in each iteration to generate a BN.
We introduced an efficient exploration framework by utilizing predefined orders
from other BN structural learning algorithms, such as HC, GES, fGES, or PC.
This framework guides the algorithm towards favorable solutions, proving crucial
in high-dimensional BNs where performing millions of iterations is challenging.

Our findings demonstrate that MCTS-BN generates high-quality BNs,
achieving commendable results even when the orders from the underlying algo-

Enhancing BN Structural Learning with MCTS 11

rithms are suboptimal. MCTS-BN excels, surpassing the gold standard’s results
when provided with good orders. Looking forward, we envision exploring alter-
native base algorithms, integrating controlled randomness in node selection, and
delving into distributed and federated versions of MCTS-BN.

Acknowledgements The following projects have funded this work: SB-
PLY/21/180225/000062 by the Government of Castilla-La Mancha and “ERDF
A way of making Europe”; PID2022-139293NB-C32, TED2021-131291B-I00
and FPU21/01074 by MCIN/AEI/10.13039/501100011033 and “ESF Investing
your future”; 2022-GRIN-34437 and 2019-PREDUCLM-10188 by Universidad de
Castilla-La Mancha and ERDF funds.

References

1. Alonso, J.I., de la Ossa, L., Gámez, J.A., Puerta, J.M.: On the use of local search
heuristics to improve GES-based Bayesian network learning. Applied Soft Com-
puting 64, 366–376 (Mar 2018)

2. Bai, F., Ju, X., Wang, S., Zhou, W., Liu, F.: Wind farm layout optimization us-
ing adaptive evolutionary algorithm with Monte Carlo Tree Search reinforcement
learning. Energy Conversion and Management 252, 115047 (Jan 2022)

3. Bryant, P., Pozzati, G., Zhu, W., Shenoy, A., Kundrotas, P., Elofsson, A.: Predict-
ing the structure of large protein complexes using AlphaFold and Monte Carlo tree
search. Nature Communications 13(1) (Oct 2022)

4. Chaslot, G.M.J.B., Winands, M.H.M., van den Herik, H.J.: Parallel Monte-Carlo
Tree Search, p. 60–71. Springer Berlin Heidelberg (2008)

5. Chickering, D.M.: Optimal Structure Identification With Greedy Search. Journal
of Machine Learning Research 3(Nov), 507–554 (2002)

6. Fenton, N., Neil, M.: Risk Assessment and Decision Analysis with Bayesian Net-
works. Chapman and Hall/CRC (Sep 2018)

7. Gámez, J.A., Mateo, J.L., Puerta, J.M.: Learning Bayesian networks by hill climb-
ing: efficient methods based on progressive restriction of the neighborhood. Data
Mining and Knowledge Discovery 22(1), 106–148 (Jan 2011)

8. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks: The
Combination of Knowledge and Statistical Data. Machine Learning 20(3), 197–243
(Sep 1995)

9. Howard, R.A.: Dynamic Programming and Markov Processes. MIT Press, Cam-
bridge, MA (1960)

10. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs. Springer
New York, 2nd edn. (2007)

11. Kajita, S., Kinjo, T., Nishi, T.: Autonomous molecular design by Monte-Carlo tree
search and rapid evaluations using molecular dynamics simulations. Communica-
tions Physics 3(1) (May 2020)

12. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams: A
Guide to Construction and Analysis. Springer Publishing Company, 2nd edn.
(2013)

13. Kocsis, L., Szepesvári, C.: Bandit Based Monte-Carlo Planning, p. 282–293.
Springer Berlin Heidelberg (2006)

12 JD. Laborda, P. Torrijos, JM. Puerta and JA. Gámez

14. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques - Adaptive Computation and Machine Learning. The MIT Press (2009)

15. Labbe, Y., Zagoruyko, S., Kalevatykh, I., Laptev, I., Carpentier, J., Aubry, M.,
Sivic, J.: Monte-Carlo Tree Search for Efficient Visually Guided Rearrangement
Planning. IEEE Robotics and Automation Letters 5(2), 3715–3722 (Apr 2020)

16. Leurent, E., Maillard, O.A.: Monte-Carlo Graph Search: the Value of Merging Sim-
ilar States. In: Pan, S.J., Sugiyama, M. (eds.) Proceedings of The 12th Asian Con-
ference on Machine Learning. Proceedings of Machine Learning Research, vol. 129,
pp. 577–592. PMLR (18–20 Nov 2020)

17. Li, A., van Beek, P.: Bayesian Network Structure Learning with Side Constraints.
In: Kratochvíl, V., Studený, M. (eds.) Proceedings of the Ninth International Con-
ference on Probabilistic Graphical Models. Proceedings of Machine Learning Re-
search, vol. 72, pp. 225–236. PMLR (11–14 Sep 2018)

18. McLachlan, S., Dube, K., Hitman, G.A., Fenton, N.E., Kyrimi, E.: Bayesian net-
works in healthcare: Distribution by medical condition. Artificial Intelligence in
Medicine 107, 101912 (Jul 2020)

19. Mo, S., Pei, X., Wu, C.: Safe Reinforcement Learning for Autonomous Vehicle
Using Monte Carlo Tree Search. IEEE Transactions on Intelligent Transportation
Systems 23(7), 6766–6773 (Jul 2022)

20. Perez, D., Mostaghim, S., Samothrakis, S., Lucas, S.M.: Multiobjective Monte
Carlo Tree Search for Real-Time Games. IEEE Transactions on Computational
Intelligence and AI in Games 7(4), 347–360 (Dec 2015)

21. Ramsey, J., Glymour, M., Sanchez-Romero, R., Glymour, C.: A million vari-
ables and more: the Fast Greedy Equivalence Search algorithm for learning high-
dimensional graphical causal models, with an application to functional magnetic
resonance images. International Journal of Data Science and Analytics 3, 121 –
129 (2017)

22. Scanagatta, M., Salmerón, A., Stella, F.: A survey on Bayesian network structure
learning from data. Progress in Artificial Intelligence 8(4), 425–439 (May 2019)

23. Scutari, M.: Learning Bayesian Networks with the bnlearn R Package. Journal of
Statistical Software 35(3), 1–22 (2010)

24. Sevinc, V., Kucuk, O., Goltas, M.: A Bayesian network model for prediction and
analysis of possible forest fire causes. Forest Ecology and Management 457, 117723
(Feb 2020)

25. Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of Go with deep
neural networks and tree search. Nature 529(7587), 484–489 (Jan 2016)

26. Silver, D., Hubert, T., Schrittwieser, J., et al.: A general reinforcement learning
algorithm that masters chess, shogi, and Go through self-play. Science 362(6419),
1140–1144 (Dec 2018)

27. Spirtes, P., Glymour, C., Scheimes, R.: Causation, Prediction and Search. Springer-
Verlag, New York, USA (1993)

28. Weng, D., Chen, R., Zhang, J., Bao, J., Zheng, Y., Wu, Y.: Pareto-Optimal Transit
Route Planning With Multi-Objective Monte-Carlo Tree Search. IEEE Transac-
tions on Intelligent Transportation Systems 22(2), 1185–1195 (Feb 2021)

29. Xie, X., Xie, B., Xiong, D., Hou, M., Zuo, J., Wei, G., Chevallier, J.: New theoretical
ISM-K2 Bayesian network model for evaluating vaccination effectiveness. Journal
of Ambient Intelligence and Humanized Computing 14(9), 12789–12805 (Jul 2022)

30. Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk, J.: Monte Carlo Tree
Search: a review of recent modifications and applications. Artificial Intelligence
Review 56(3), 2497–2562 (Jul 2022)

	Enhancing Bayesian Network Structural Learning with Monte Carlo Tree Search

