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Abstract. The article addresses the ubiquitous challenge of uncertainty
in decision-making, with a particular focus on medical decision-making,
through the innovative application of logistic regression enhanced by
interval-valued fuzzy set theory. Traditional logistic regression relies on
a linear combination of variables and a uniform set of regression coeffi-
cients, which can inaccurately represent the variability and uncertainty
inherent in real-world data. Our proposed methodology differs in that
it incorporates weights with interval values into the logistic regression
model, allowing for a more nuanced and flexible representation of the
data. This approach allows the model to adjust the weights indepen-
dently in terms of values, offering a fit to interval data and improving
the precision of predictions. By developing a specialized algorithm to cal-
culate weighted coefficients adjusted to specific inputs or attributes, we
demonstrate the practical effectiveness of our method in dealing with un-
certainty. Experimental results highlight the potential of interval-valued
fuzzy sets in improving machine learning techniques and enhancing the
accuracy of decision-making models in complex, uncertain environments.

1 Introduction and motivation

Our research direction has been inspired by the ubiquitous issue of uncertainty
in decision-making, especially in daily medical practice. Uncertainty or impre-
cision, as it is also known, finds a robust representation through interval-based
fuzzy sets. This method has been validated in many applications, especially when
adopting an epistemic approach (see [7]) in which the intervals cover a single de-
sired value. The source of uncertainty is often a lack of precise knowledge. This is
particularly true in the medical field, where descriptions can be inherently vague
or ambiguous. Such inaccuracy can result from a variety of factors, including the
type of medical equipment used or the subjective interpretation of the healthcare
professional.

The current situation demands the adoption of non-traditional methods for
data modeling and inference that can adequately account for imprecision. Al-
though extensive research has been conducted in this area (e.g. [3, 1]), there
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remains a lack of efficient methods to manage such imprecision within the med-
ical and industrial sectors. In response, this paper proposes the utilization of
logistic regression within a machine learning framework, combined with interval
fuzzy set theory, as a means to effectively represent uncertainty and facilitate
decision-making in uncertain contexts. This is particularly relevant for the rep-
resentation and processing of parameters that have been learned through the
model. Machine learning is an ever-evolving field that continues to uncover new
practical applications, including in the domain of medicine, where the integra-
tion of artificial intelligence offers promising new avenues for exploration and
implementation (see [18]).

At its core, machine learning is a technique for constructing and updating
model weights, a process essential to the effectiveness of these models. This arti-
cle introduces a novel method for developing and modifying weights in a logistic
regression model by using interval representations. This approach specifically
addresses data uncertainty, a critical factor in predictive modeling. Logistic re-
gression is particularly effective in estimating the probability of diseases such as
breast cancer, diabetes and ischemic heart disease by analyzing patient charac-
teristics, including age, gender, body mass index and various blood test results
(see for example [12, 11]). The model has proven effective in predicting the risk of
common chronic diseases based on simple clinical indicators, as detailed in pre-
vious studies. Such predictive performance underscores the potential of logistic
regression compared to other machine learning models, highlighting its utility in
healthcare applications (see [19] or [15])

The basic learning algorithm traditionally updates scalar weights based on
the difference between predicted model values and actual results for individual
data points. Our innovative proposal changes this approach by introducing a new
coding technique for the weighting factor update mechanism. The technique uses
a structure of intervals and distinct values represented by these intervals. Within
this framework, a single weight can correspond to multiple scalar values, each
associated with input values that fall within a designated interval. We intend
to introduce an algorithm designed to calculate weighted coefficients adopted to
specific inputs or attributes. The driving force behind our research was to im-
prove the conversion of data into learning coefficients, while taking into account
the inherent uncertainty in the data. This is intended to improve the adapt-
ability and accuracy of machine learning models by providing a more nuanced
representation of real-world data variability. In particular, we consider the use
of interval calculus to represent uncertainty in two aspects:

1. representation of imprecise data;
2. enhancing the flexibility of the sigmoidal model in logistic regression (model

parameters in the interval form, see Fig. 2).

In traditional models, such as logistic regression, parameters are typically rep-
resented as scalar values, as demonstrated in Fig. 1. Our approach challenges
this convention by advocating for the use of intervals, which allows for a more
nuanced and flexible representation of model parameters. This innovation is de-
signed to improve the model’s performance by enabling it to more effectively
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process and interpret data that is characterized by uncertainty. Our methodol-

Fig. 1. Classical logistic regression

ogy is centered on the principle of constructing parameter models in a deliberate
manner, grounded on the specific ranges of data that necessitate representation
through subintervals. This leads to the conceptualization of representing these
ranges as a sequence of subintervals, akin to an array, as illustrated in Fig. 2.
This approach ensures that model parameters are not randomly assigned but
are instead systematically derived from the inherent data structure, offering a
more accurate and nuanced understanding of the data’s underlying patterns and
uncertainties.

Fig. 2. Multi-interval-weights logistic regression
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2 Uncertainty, fundamentals of interval-valued theory

Since the introduction of fuzzy sets by Zadeh [26], many approaches and theories
to study and model uncertainty have been proposed. Especially, interval-valued
fuzzy sets [23, 27] are a strong tool for uncertainty modeling in many practical
issues.
2.1. Interval-valued fuzzy setting
Needed in our approach will be the notation of intervals representing uncertainty.
Thus a family of intervals belonging to the unit interval is LI = {[p, p] : p, p ∈
[0, 1], p ≤ p}. We also have to recall the definition of interval-valued fuzzy
set (IVFS) [27, 23, 24, 10], S in X as a mapping S : X → LI such that for each
x ∈ X, X ̸= ∅, and S(x) = [S(x), S(x)] means the degree of membership of
an element x into S. The family of all IVFSs in X we denoted by IVFS(X).
We assume, because of the application aspect that X = {x1, . . . , xn} is a finite
set. The IVFSs spend so useful for the uncertainty of information because in
opposite to fuzzy sets, in IVFSs the membership of an element x is not exactly
indicated. Specified an upper and lower bound of the possible membership. For
any fixed x ∈ X we assume S(x) = [S(x), S(x)] = [s, s].

In LI we may use the best-known and often-used partial order

[s, s] ≤2 [t, t] ⇔ s ≤ t and s ≤ t. (1)

In practical scenarios, it is frequently necessary to compare data that is repre-
sented as intervals, subsequently requiring a mechanism to establish some form
of linear order. This need arises because we aim to transcend the limitations
posed by incomparability, often encountered in interval data. By extending the
partial order, denoted as ≤2, to a linear and admissible order, we enable a
more straightforward comparison of interval-represented data. This adjustment
facilitates the alignment and analysis of such data within our proposed models,
enhancing their applicability and effectiveness in handling real-world problems
where data uncertainty is a significant factor [4, 28].
2.2. Aggregation process
The integration of uncertain operators and data plays a crucial role in accurately
modeling reality through mathematics. In particular, the concept of an aggrega-
tion function within the context of LI proves to be essential across a wide array
of applications (e.g., [9, 20] or [2, 21]). Such functions are pivotal for compiling
high-quality, precise summaries of data, which in turn, facilitate the generation
of reliable outcomes in decision-making scenarios. Aggregation, in essence, is the
methodology employed to synthesize and represent data cohesively. When deal-
ing with input data represented as interval-valued fuzzy sets, it becomes possible
to define aggregation processes that adhere to specific, adequate orders, such as
≤2 or ≤Adm. This allows for a structured and effective way to combine and in-
terpret uncertain data, enhancing the precision and relevance of the conclusions
drawn from such analyses.

Definition 1 ([13]). Let n ∈ N, n ≥ 2. An operation A : (LI)n → LI is called
an interval-valued (I-V) aggregation function if it is increasing with regard to
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the order ≤ (partial or linear), i.e. ∀xi, yi ∈ LI xi ≤ yi ⇒ A(x1, ..., xn) ≤
A(y1, ..., yn) and A([0, 0], ..., [0, 0]︸ ︷︷ ︸

n

) = [0, 0], A([1, 1], ..., [1, 1]︸ ︷︷ ︸
n

) = [1, 1].

Since their introduction by Yager in 1988, Ordered Weighted Averaging
(OWA) operators have become a widely discussed and applied concept in various
practical applications. OWA represents a further generalization of the arithmetic
mean, enabling aggregation across different orders. Significantly, OWA operators
are a subset of a broader category of aggregation functions known as Choquet
integrals. This conceptual expansion allows for the adaptation of OWA operators
to interval-valued fuzzy settings by extending their definition to accommodate
linear or admissible orders on LI . This adaptation highlights the operators’ flex-
ibility and their capacity to provide nuanced aggregations within the realm of
interval-valued fuzzy sets theory, offering a powerful tool for handling complex
data in a more structured and interpretable manner.

In the work [5], the authors have expanded the definition of Ordered Weighted
Averaging (OWA) operators to encompass linear or admissible orders within the
context of LI :

Definition 2 ([5]). Let ≤ be an admissible order on LI , and
w = (w1, . . . , wn) ∈ [0, 1]n, with w1 + · · ·+ wn = 1. The interval-valued ordered
weighted averaging (OWA) operator (IVOWA) associated with ≤ and w is a map-
ping IV OWA≤,w : (LI)n → LI , given by IV OWA≤,w([x1, x1], . . . , [xn, xn]) =
n∑

i=1

wi · [x(i), x(i)], where [x(i), x(i)], i = 1, . . . , n, denotes the i-th greatest of the

inputs with respect to the order ≤ and w · [x, x] = [wx,wx], [x1, x1] + [x2, x2] =
[x1 + x2, x1 + x2].

Given that IV OWA≤,w does not serve as an aggregation function under the
order ≤2 as noted in [5], we opt to employ a linear order when defining uncertain
OWA operators.
2.3. Moore’s calculus
In the field of interval arithmetic, Moore’s arithmetic is recognized as the most
universally accepted and frequently applied method, as documented in references
[16, 17]. Moore’s arithmetic outlines basic operations on intervals, such as addi-
tion, subtraction, and multiplication, with specific formulas for each operation.
For two intervals X = [x, x] and Y = [y, y], the operations are defined as follows:
Addition: [x, x]+ [y, y] = [x+y, x+y]; Subtraction: [x, x]− [y, y] = [x−y, x−y];
Scalar multiplication for a positive real number a ∈ R+ is:a ∗ [x, x] = [ax, ax]
and for a negative real number a ∈ R−, it is: a∗ [x, x] = [ax, ax]. The product of
two intervals is calculated as: [x, x]∗ [y, y] = [min(x∗y, x∗y, x∗y, x∗y),max(x∗
y, x ∗ y, x ∗ y, x ∗ y)]

These operations apply to real numbers within the intervals where x ≤ x and
y ≤ y, providing a solid foundation for arithmetic operations involving intervals.

Some limitations and drawbacks have been identified in Moore’s interval
arithmetic, notably the issue of excess width in the results. An alternative ap-
proach, known as multidimensional interval arithmetic, has been proposed to
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overcome these challenges. This concept, introduced by A. Piegat [22], offers a
novel way to represent values within an interval X = [x, x]. Specifically, any
value x from interval X is characterized using a variable γx, where γx ∈ [0, 1],
as shown in the following representation formula:

Repγ(x) = x+ γx(x− x). (2)

With this approach, the interval X = [x, x] is described more dynamically as:

X = {Repγ(x) : Repγ(x) = x+ γ(x− x), γ ∈ [0, 1]}. (3)

The variable γ thus allows for the retrieval of any value between the lower bound
x and the upper bound x of interval X, offering a more nuanced and flexible
method for managing interval data.

3 Structure of the dataset

The effectiveness of the proposed learning model, which incorporates uncertainty
(as described in Section 5), was evaluated using medical diagnostic data. Specif-
ically, we applied our methodology to the Wisconsin (diagnostic) breast cancer
dataset available from the UCI Machine Learning Repository [6]. This dataset
is derived from digitized images of fine needle aspirates (FNA) of breast masses,
with features characterizing the cell nuclei present in the images.

For each cell nucleus, ten real-valued features are calculated. For each feature,
both the standard deviation and the mean value of the measurements for the
patient are considered. From these values, an interval is constructed to represent
each feature accurately:
[mean − standard deviation,mean + standard deviation].
This interval is then normalized/fuzzified for each value: "mean - standard devi-
ation" and "mean + standard deviation," providing a comprehensive represen-
tation of the data in terms of intervals.

The decision outcome within this dataset indicates the diagnosis: malignant
(denoted by “0”) or benign (denoted by “1”). The dataset encompasses a total of
569 patients/objects, which includes 212 malignant cases and 357 benign cases.
Given the dichotomous nature of the decision values (0 and 1), logistic regression
emerged as the optimal choice for predicting the diagnosis.

4 Proposed new methodology

In the initial phase of our research, we selected logistic regression with stochastic
gradient descent as our foundational model due to its simplicity and widespread
applicability. Our experimental modification involves adapting this model to
handle interval data effectively. We utilize the following notation for our dataset
{Yi, xi1, ...xip} and xip ∈ LI , Yi ∈ {0, 1} for i = 1, ..., n, n representing the total
number of instances and p the number of attributes.
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The model was trained on a dataset consisting of nk observations through
a predefined number of internal iterations. The outcome of this training phase
is encapsulated in a result vector comprising the trained parameters β and ϵ,
expressed as:

yi = β0 + β1xi1 + ...+ βpxip + ϵi

for i = 1, ...nk and βk ∈ R for k = 1, ...p.
Logistic regression finds utility across a diverse range of domains, includ-

ing but not limited to machine learning, various medical fields, and the social
sciences. It is particularly effective for predicting the likelihood of disease devel-
opment, such as diabetes or ischemic heart disease, by analyzing patient-specific
characteristics like age, sex, body mass index, and blood test results (see [12]).

The fundamental principle of logistic regression involves employing a linear
combination of explanatory variables alongside a set of model-specific regression
coefficients, which remain consistent across all instances. For a given data point i,
the linear predictor function yi incorporates parameters β0, . . . , βm, with each β
coefficient reflecting the degree of influence exerted by corresponding explanatory
variables on the outcome.

The core of the learning algorithm lies in the adjustment of scalar β values,
which is based on the discrepancy between the predicted outcomes and the actual
observations for each data entry.

Our approach introduces a novel encoding method and an updating mecha-
nism for the weighting factors. Unlike traditional methods where weighting fac-
tors are assigned singular real values post-training, our method represents these
factors as a sequence of intervals and distinct values, segmented into compart-
ments. This adjustment allows for a more nuanced interpretation and application
of the regression coefficients, enhancing the model’s ability to capture and reflect
the complexity of the data.

In this novel approach, a single weighting factor is capable of possessing mul-
tiple scalar values, each of which is precisely assigned to input values falling
within a specific range.

Procedure based on a new approach

The proposed procedure consists of the following three main steps describing
the Construction of the initial parameters β - sequence composed of subintervals
for training data, optimization of the width of the intervals method, and Learning
procedure, which collectively form the backbone of our approach.
Description of the new procedure:

I. Construction of the initial values of the model parameters. For each attribute,
we build parameters βj = {βjt : vt → βjt, βjt ∈ LI and vt ∈ R} as a
sequence of intervals based on the input data ( see below step 1 and step 2
(sequences of intervals with optimization of their width)). Therefore, the jth
parameter

βj = {βjt↑vt

} = {[η1, η2)↑v1

, ..., [ηz, ηz+1]↑vz
},



8 B. Pękala, et al.

1 ≤ j ≤ p for p attributes and 1 ≤ t ≤ z. Note that β0 = [0, 1]: with v0 = 1.
II. Learning process based on a new form: a sequence of intervals with corre-

sponding representatives. During training (in individual iterations - Step 3),
individual representatives are modified based on the error value determined
based on the distance of the exact value Yi from the approximate yi of the
ith object. In particular, in each iteration, we select for updating that vt,
1 ≤ t ≤ z for which the intervals associated with them have a part in com-
mon with the interval corresponding to the input data of a given attribute
(selection method described in Step 3.3.) and we use in the process of up-
dating Moore’s operation. Returning updated values in new ranges β′

0 and
β′
j for 1 ≤ j ≤ p.

In particular, our procedure includes the following key steps:

Step 1 Construction of the initial value of model parameters β - sequence composed
of subintervals for training data.
In our approach, a critical aspect is the determination of the number and
width of subintervals, which significantly enhances the performance of tradi-
tional linear regression. Various tactics can be employed, such as selecting the
number and width of intervals randomly, setting a fixed number of intervals
of a specified width, or initializing the segmentation based on a preliminary
analysis of the training data’s structure. For the first two strategies, finding
the most effective subdivision into subintervals requires experimental valida-
tion across different datasets. With the latter method, the process of dividing
into a specific number of subintervals and determining their width is auto-
mated based on the initial data analysis. It’s important to note that this
initial division of weights into sub-ranges is just the beginning; there’s room
for further optimization of these sub-ranges, especially if the initial ranges
are deemed too narrow. This optimization level is controlled by a threshold
parameter set within the (0,1) range. When this parameter is set to 1, no
optimization takes place.
The procedure of automatically building adequate subintervals based on data
we observe in Fig. 3.

Step 2 Optional optimization of the width of the intervals.
We use the following algorithm to eliminate of to narrow subintervals of each
β at the assumed significance threshold ψ (we choose optimal 0,1).
In Algorithm 1 - Modification of Parameters, we propose to use the following
weight aggregation A :

A(a, b) =

 1
2 (

wa

wb
a+ b), if wb ≥ wa,

1
2 (a+

wb

wa
b), otherwise,

(4)

where wa, wb are weights of intervals with assumed values a and b, respec-
tively.
Thus, formally we present j-th parameter in the following way:

βj = {βjt↑vj
} = {[η1, η2)↑v1

, ..., [ηz, ηz+1]↑vz
},
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Fig. 3. Parameters initialization of β

Algorithm 1: Algorithm Modification of Parameters
input : n element data set instances, p - number of attributes,

{βj}pj=1, βj = {[η1, η2], ..., [ηz, ηz+1] for p attributes and with
assumed values for each interval: v1,...,vz, z ≤ n− 1; A satisfy (4).
output: {βj}pj=1, βj = {[δ1, δ2], ..., [δm, δm+1]} for p attributes and with

assumed values for each interval: d1,...,dm, m ≤ z and for all k
δk+1 − δk ≤ ψ

for j = 1, ..., p do
for k=1,...,z do

if ηj − ηj+1 ≤ ψ then
if |vj − vj−1| ≤ |vj − vj+1| then

return di ← A(vj , vj−1)← [δj−1, δj ]

return dj ← A(vj , vj+1)← [δj , δj+1]

1 ≤ j ≤ p for p attributes and 1 ≤ t ≤ z and we assumed values for each
intervals: v1, ...vz. βjt ∈ LI and vj ∈ R, where vj → βjt. Note that β0 = [0, 1]:
with v0 = 1.

Step 3 Learning procedure.
One iteration of the learning process follows the scheme:

1. Calculation of the model response for each training sample according to
the sigmoid function:

f(yi) =
1

1 + e−Repγ(β0+β1·xi1+...+βp·xip+ϵi)

for γ ∈ [0, 1] and f : LI → R.
From this step, in every single iteration, we switch from the interval
calculus to the real model using the defined Rep function in (2). Which
allows us to operate on data in the form of interval-valued fuzzy sets
while receiving the model in the form of a vector of real numbers.
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2. For the computation of an error (loss function) between the computed
value and the actual value we assumed for Yi - actual output value:

L(yi) = − log(f(yi)) · Yi − log(1− f(yi)) · (1− Yi).

3. Finally, we update of learning coefficients in the steps:

βjt↑vj
= βjt↑vj

+ α · ▽βj↑vj
L(yi) · xij ,

β0↑v0
= β0↑v0

+ α · ▽β0↑v0
L(yi),

α is learning coefficient and ▽ is gradient for i = 1, .., nk, j = 1, .., p.

Individual iterations are associated with the following method of modi-
fying β parameters along with their weight representatives v1, ...., vz.
A simplified diagram of the learning mechanism, using an assigned value,
indexed by interval matching, is graphically present in Fig. 4.

Fig. 4. Change/choose the representative value of intervals

For determining the weighted beta coefficients for excitation from a given
input/attribute, we define the following procedure based on the weight
aggregation method.
For input value xij ∈ LI , i = 1, ..., p. If ∅ ≠ xij ∩ [ηk, ηk+l], k + l ≤ z,
then

vj =

k+l−1∑
t=k

∫ t+1−θ2

t+θ1

g(t) ∗ vj ,

with θ1, θ2 as offsets input attribute with respect to some β subinter-
vals (see Fig. 4) and the Gaussian function g(t) described on [t, t + 1]
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subinterval of βj such that: g(t) =
∫ t+1

t
e−t2∗λ and for λ satisfy∫ t+1

t
e−t2∗λ = 1.

Each step of learning is based on each time checking which sub-intervals within
βj a given interval of input values of the considered attribute have in common
part, to build a new one based on their representatives and there we also use the
presented algorithm to eliminate to narrow subintervals of each β by Alg. 1.
Finally, we obtain optimal for each 1 ≤ j ≤ p βjm↑vj

and β0↑v0
for 1 ≤ m ≤ z.

Please note that for the testing process that takes place on 10% of the ran-
domly selected data, we do not use Step 1 of the above learning process.

5 Experimental results and discussion

For the training process, input data is divided into training and testing subsets in
a 90% to 10% percent ratio. The learning algorithm is based on iterative learning
using a 10-fold cross-validation method. The test subset does not participate in
the training process.

We checked our model in various real-life scenarios, dealing with uncertain
and real weights (baseline model), and compared it with the Interval weights, i.e.,
the Model Multi-interval-weights logistic regression. During the research of cases
5.1-.5.2 we assumed ϵi = 0, α = 0.01, and γ = 0.5 of the algorithm described in
Section 4 with 100 learning epochs.

We compare the application of the proposed new approach "Interval weights"
to the classical "Baseline model".

5.1. Baseline model
As a Baseline model with real values of weights, we decided to use a situation in
which we have uncertain interval data with no missing values (complete uncertain
data), and in the learning procedure, we use real values of weights. We present
the effectiveness of the studied algorithm used in the training and tested set
(Tab. 1).

Table 1. Classification results for Baseline model on training and test set by accuracy
(ACC), sensitivity (SENS), specificity (SPEC), precision (PREC), and F1 measure

ACC SENS SPEC PREC F1

training set 0.962 0.979 0.930 0.965 0.972

test set 0.913 0.916 0.909 0.942 0.929

5.2. Interval weights model
As the Interval weights Model, we called the model multi-interval-weights logistic
regression, the performance of which we also present for the training and test
subsets of data (Table 2).
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From Tables 1 and 2, it’s evident that there’s a notable enhancement in the
classification efficiency when utilizing regression combined with our proposed
method for updating weighting factors, which are structured as a series of inter-
vals for test datasets. Despite a rise in computational complexity compared to the
baseline model, this improvement represents a significant advantage, particularly
in applications such as enhancing breast cancer diagnosis accuracy. Additionally,
it’s important to highlight that this model improvement, facilitated by interval
weights, surpasses the efficiency parameters of the baseline model even with fewer
epochs of training. Moreover, because the F1 score combines precision and sensi-
tivity using their harmonic mean, our very high F1 score implies simultaneously
maximizing both precision and sensitivity and confirms the effectiveness of the
proposed method. The study encompassed both the baseline model—that is, a

Table 2. Classification results for interval weights model on training and test set by
accuracy, sensitivity, specificity, precision, and F1 measure

ACC SENS SPEC PREC F1

training set 0.968 0.980 0.950 0.968 0.974

test set 0.931 0.916 0.954 0.970 0.942

regression-based training model utilizing standard real-valued learning parame-
ters—and a model employing multi-interval-weighted logistic regression, consid-
ering various factors. This included examining the effects of varying the number
of epochs and different values of the ψ parameter. The ψ parameter serves as a
threshold for regulating the width of intervals within the individual β parame-
ters. It was found that optimal results are typically achieved when ψ falls within
the range of [0.1, 0.5]

In real-world datasets, each attribute signifies a distinct characteristic of the
input set, and the correlations between the values of individual records play a cru-
cial role in accurately classifying samples. Most machine learning architectures
assign specific weights to each input to signify the importance of an attribute
in determining the membership of a sample in a particular decision class. A sig-
nificant challenge with this method is the assumption that an attribute linearly
influences the model’s final decision, and a single scalar weighting factor suffices
to interpret the values of an attribute correctly. This approach tends to dimin-
ish the significance of an attribute which, particularly in medical datasets, can
have vastly different implications depending on the measured value. For instance,
extreme values of blood pressure, temperature, or heart rate are interpreted dif-
ferently than average values. Employing linear weighting factors for such data
could lead to overemphasizing low-value data or underrepresenting high-value
data. The remedy to this issue involves utilizing separate weighting factors for
different value ranges, tailored to their actual significance. This strategy enables
the precise determination of weighting factors for specific sub-ranges, signifi-
cantly enhancing the data representation accuracy and thereby crafting a model
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that aligns closely with the input data. In conclusion, the innovative learning
method employing multi-interval weights in logistic regression not only boosts
classification efficiency but also shows promising prospects for further advance-
ments, such as its application in federated learning models.

6 Summary and future works

In this paper, we introduced an efficient algorithm for calculating the weighted
beta coefficients based on inputs or attributes. Logistic regression fundamentally
relies on a linear combination of explanatory variables along with a consistent set
of regression coefficients tailored to the model but identical across all instances.

Looking ahead, we aim to propose methods for weight aggregation alongside
the algorithm for determining weighted coefficients in their new form, addressing
various practical challenges, notably in federated learning scenarios as discussed
in [8]. Our future efforts will focus on enhancing the work in the realm of feder-
ated learning. The application of interval-valued logistic regression is particularly
suited to the federated learning framework, as it allows local models to adapt to
diverse parameter ranges, a flexibility afforded by our proposed method.

It’s important to underline that federated learning emerges as a paradigm
designed to tackle data governance and privacy issues. It achieves this by en-
abling collaborative algorithm training without the need to share the data itself,
as highlighted in [25] and [14]. This approach not only preserves privacy but also
opens new avenues for the application of our interval-valued logistic regression
methodology in distributed learning environments.
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