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Abstract. In this paper a very concise history of the relationship be-
tween fuzzy theory is given, from its origins to the fuzzification of al-
gebraic structures, and Lie algebras, with special attention on exploring
the use of fuzzy theory to generalise definitions and results of abstract
algebra, and a focus on the fuzzification of Lie algebras. In order to rein-
force the idea that strong links exists between the two disciplines, focus
has been also put on the more recent and intriguing link between the
two, namely the transfer principle, with suggestions on of this can be
implemented in further research. The paper is meant as a starting point
for renewing the discussion and fuelling further research on the topic.
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1 Introduction

Since 1965, the work of L.A. Zadeh (1921-2017, see Figure 1 on the right) [27]
has been a milestone in mathematical research, influencing various fields and
contributing to the theoretical and applied development of all sciences (and not
only). When he wrote his pioneering work, he was working at the University of
Berkeley (he had been there since 1959). He became chair of the department in
1963, during which time he changed the department’s name from the Department
of Electrical Engineering (EE) to the Department of Electrical Engineering and
Computer Science (EECS) [23]. To be fair, fuzzy theory has not been a success
in the American scientific community. As an example, we quote the words of
Professor William Kahan (University of Berkeley) in 1975:

Fuzzy theory is wrong, wrong, and pernicious [...]. The danger of fuzzy
theory is that it will encourage the sort of imprecise thinking that has
brought us so much trouble. [19, p. 1]

However, as we will see in Section 2, fuzzy theory has influenced not only
applied areas but also areas of abstract mathematics such as algebra. The con-
tribution of Zadeh’s work also lies in the strong inspiration it gave to mathe-
maticians of the time and the developments that this inspiration led to. In this
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paper, we will therefore try to briefly summarise the role that fuzzy set the-
ory has played in abstract algebra, starting from Rosenfeld’s early results on
groupoids and groups, and leading to its application in Lie theory (specifically
in Lie algebras). Finally, we will discuss the transfer principle, a method that
elegantly connects most classical results on crisp algebraic structures with their
corresponding fuzzy counterparts. To achieve this, a small part of this paper will
be devoted to the emergence of Lie theory, although we will refer the reader to
much more detailed works on the history of mathematics.

In particular, in Section 2 we give a brief historical description of the fuzzifi-
cation of algebraic concepts. In Section 3, we describe what a Lie algebra is and
its fuzzy counterpart. In the next section, we describe the transfer principle —
in the context of abstract algebra — that underlies the process of fuzzification
of crisp concepts of abstract algebra. Finally, the concluding section will present
a synthesis of the observations derived from the entire discussion.

2 Brief history of the fuzzification of basic algebra’s
concepts

The application of fuzzy set theory in abstract algebra can be certainly traced
back to 1971 when Azriel Rosenfeld (1931–2004, see Figure 1 on the left) pub-
lished a paper entitled “Fuzzy Groups” [21]. Although L.A. Zadeh is widely
recognised as the father of fuzzy theory, “Rosenfeld is the father of fuzzy ab-
stract algebra” [17, Preface, p. XII]. The article presents a fuzzy approach to
generalise the definitions of algebraic structures of groupoids and groups, similar
to Chin-Liang Chang’s work in 1968 on topological spaces [4].

Fig. 1. Azriel Rosenfeld (1931–2004) and Lotfi Aliasker Zadeh (1921-2017)

In order to fully understand the context, it would be beneficial to quote the
preface written by Rosenfeld in the book “Fuzzy Commutative Algebra” by John
N. Mordeson and Davender S. Malik, published in 1998:

The idea of trying to fuzzify algebra finally after several years later [from
the first read of Zadeh’s paper [27]], after Lotfi’s student C.L. Chang had
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published his paper “Fuzzy topological spaces” (J. Math. Anal. Appl. 24
(1968) 182-190). After somewhat belatedly coming across that paper, I
said to myself “If Chang can do it for topological spaces, I can do it for
algebraic structures.” [17, Foreword, p. X]

And he goes on to talk about the approach with which he wrote his article in
1971:

I took a copy of my own algebra book with me on a train ride from Wash-
ington to New York, with the intention of formulating natural fuzzifica-
tions of the basic concepts of algebra. Needless to say, I found a way to
do this; in fact, by the end of the train ride I had written an essentially
complete draft of my embarrassingly well-cited paper “Fuzzy groups” (J.
Math. Anal. Appl. 35 (1971) 512-517). [17, Foreword, p. X]

Now we will explore how to present the fundamental definitions of abstract
algebra clearly and concisely, and what meaning we can derive from them.

A groupoid is an algebraic structure that requires very little: a closed binary
operation on a set. We must define an operation that associates another element
of the same set with a given pair of elements from the set. To simplify, we
can refer to this operation as multiplication (and use multiplicative notation
accordingly).

To be more precise, letG be a set and let (·) : G×G → G be the multiplication
on G. The set G is a groupoid if x ·y ∈ G, for any x, y ∈ G. In essence, we require
that the product of any two elements in the set must also be an element of the set.
Before proceeding, it is necessary to note that the definition of a groupoid found
in Rosenfeld’s work is currently known as a magma. Today, the term groupoid
refers to a different algebraic structure. Anyway, for historical reasons, we will
continue to use the term groupoid in this article.

It is important to note the significance of this requirement, as it is easy to
create binary operations that do not meet this criterion (as in the following
example).

Example 1. Let D be the set of odd numbers and let (+) be the usual addition.
This operation is not closed in D since the sum of two odd numbers is even,
hence it does not belong to D.

The concept of belonging to a set is crucial, yet often overlooked. Zadeh’s
work raises questions about the degree of membership of a pair of elements
that may not strictly belong to the set. Additionally, it prompts us to consider
the implications for their product in such cases. As an example, we recall the
definition of the fuzzy version of a subgroupoid as given by A. Rosenfeld in 1971.
We do this for two reasons. The first lies in its historical relevance, as it is the
first example in literature of the fuzzy version of a purely algebraic object. The
second reason is theoretical. The essence of this definition lies in describing how
a membership function behaves in relation to an operation introduced in a set.
In other words, this definition describes the behaviour of the algebraic structure
defined on a fuzzy (sub)set.
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Definition 1 ([21]). Let G be a groupoid. A fuzzy subset µ of G is called a
fuzzy subgroupoid of G if, for all x, y ∈ G,

µ(xy) ≥ min(µ(x), µ(y)). (1)

In other words, we require that the product of two elements belongs to the
groupoid at least as much as the one that belongs to it less. Following Defini-
tion 1, we naturally encounter the classical definitions and results of abstract
algebra, such as fuzzy subgroups and homomorphisms, which generalise their
crisp versions. This method of generalising the closure of an operation can be
applied to other algebraic structures that are much richer than groupoids. In
abstract algebra, if we have an algebraic structure and want to define its natural
substructures (such as group-subgroup, ring-subring, vector spaces-subspaces,
etc.), the first requirement is that the operation inherited from the algebraic
structure that contains it is closed. Hence, the condition expressed by Equa-
tion (1) will seem to define many of these algebraic structures and can be used
to fuzzify any (sub-)algebraic structure.

3 Fuzzy Lie algebras

3.1 Origin of Lie algebras

Lie algebras can also be fuzzified using the same approach described in the
previous section. They are algebraic structures with a geometric origin, which
we will now summarise. To begin, we must answer a simple question: what is a
geometric structure? An algebraic structure has a precise definition, it is a set
endowed with an operation (unary, binary, and so on) that must satisfy some
axioms. However, the same cannot be said for a geometric structure. Although
we know that polygons, curves or surfaces are geometric objects, it is difficult
(or impossible) to describe mathematically the subjective consideration linked
to our experience or our sensations.

Felix C. Klein (1849-1925, see Figure 2 on the right) attempted to answer
this question in its original paper [12] (see [11] for the corresponding translated
paper). Specifically, a generalisation of geometry raises the following comprehen-
sive problem:

Given a manifoldness and a group of transformations of the same; to
investigate the configurations belonging to the manifoldness with regard
to such properties as are not altered by the transformations of the group.
[11, p. 218]

Concurrently with Felix Klein’s Erlanger Program, Marius Sophus Lie (1842-
1899, see Figure 2 on the left) began studying smooth transformation groups,
also known as continuous groups at the time. These groups were supported
not only on a set but on a richer object that admitted a topology. This led
to the definition of a Lie group, which is a smooth manifold equipped with a
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topology — that enables the application of methods from mathematical analysis
— and endowed with a compatible group structure. In a Lie group, the group
operation and the function associating each element with its inverse must be
smooth functions. This means that they can be infinitely differentiated.

Fig. 2. Marius Sophus Lie (1842-1899) and Felix Christian Klein (1849-1925)

For a comprehensive historical account of Sophus Lie and Lie theory, we
suggest consulting a more detailed and technical source (e.g., [8]).

Lie groups are not linear structures but rather curved manifolds. The power
of Lie’s theorem lies in simplifying the study of these objects by shifting their
investigation to simpler ones. The basic idea, informally stated, is to associate
a linear structure, primarily a vector space, with such complex objects as Lie
groups, ensuring that this new structure inherits the group’s properties. Fur-
thermore, the results obtained on these linear structures should provide insight
into the original Lie group. The solution to these questions can be found in Lie
algebras (see Figure 3 for an example). They are vector spaces on which an op-
eration, known as the Lie bracket, is defined. The Lie bracket must satisfy two
properties. For clarity, we provide the definition here.

Definition 2. Let F be a field. One has that g is a Lie algebra over F if g is an
F-vector space equipped with a bilinear form, known as Lie bracket, defined as
follows:

g× g → g

(x, y) 7→ [x, y]

satisfying the following properties for all x, y, z ∈ g:

[x, x] = 0, (alternating property)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0. (Jacobi identity)

Lie’s theorem simplifies many questions about Lie groups into questions
about Lie algebras, that is, questions about smooth manifolds can be trans-
formed into questions about linear algebra, resulting in a very wealthy theory.
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It is important to note that Lie algebras, while having an abstract mathe-
matical origin, are often studied purely as algebraic objects, disregarding their
geometric roots. Despite their abstract construction, these structures have con-
crete applications in fields such as the theory of differential equations (e.g, [5,
18]), physics (e.g., [22, 25]), and robotics (e.g., [6]).

G

g

γX(t)

γ′
X(0) = X

eG

Fig. 3. The Lie algebra g of the Lie group G.

3.2 How to fuzzify Lie algebras

A Lie algebra g, like any other algebraic structure, can be fuzzified in Rosenfeld
style. A subalgebra of g, which is a subspace, remains closed with respect to the
bracket operation. The definition of a fuzzy Lie subalgebra of a Lie algebra over
a field was first introduced by Samy El-Badawy Yehia in [26]. Nevertheless, we
use the notation in [2, Definitions 1.16 - 1.17] for our following definition.

Definition 3 (cf. [2]). Let g be a Lie algebra. A fuzzy set µ : g → [0, 1] is called
a fuzzy Lie subalgebra of g over a field F if

1. µ(x+ y) ≥ min{µ(x), µ(y)},
2. µ(αx) ≥ µ(x),

3. µ([x, y]) ≥ min{µ(x), µ(y)},

for all x, y ∈ g and α ∈ F.

In Lie algebras, as in other algebraic structures, it is possible to define richer
subspaces that play a fundamental role in their study. These subspaces are known
as ideals.

Definition 4. Let g be a Lie algebra over a field F. A subspace i ⊆ g is called
ideal of g if [x, y] ∈ i, for any x ∈ i and y ∈ g.
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Therefore, an ideal is a special subalgebra of a Lie algebra: not only is it
closed under the Lie bracket operation, but if we compute this bracket between
an element of the ideal and any element of the algebra, we still get an element of
the ideal. Therefore, in this sense, we can think of ideals as Lie subalgebras that
absorb (both from the left and from the right) the elements of the Lie algebra.

As we have seen for fuzzy subgroups, it is also possible to fuzzify the definition
of Lie ideals (see, e.g., [2, Definition 1.18, p. 8]). Roughly speaking, for fuzzy Lie
ideals one requires that the membership functions of the Lie bracket [x, y], for
any pairs x, y ∈ g, has to be at least equal to µ(x).

It is evident from this section that the class of Lie algebras is properly con-
tained within the class of fuzzy Lie subalgebras. To obtain the original definition,
one simply needs to consider the following membership function

µ(x) =

{
0 if x /∈ g

1 if x ∈ g

This is not limited to Lie algebras but also applies to all fuzzified algebraic
structures (groupoids, groups, vector spaces, and so on). Furthermore, as is cus-
tomary when defining a generalised algebraic structure, a substantial portion of
research is dedicated to finding analogous results for these new and more gen-
eral structures. For instance, consider Levi’s theorem for Lie algebras extended
to Leibniz algebras (a generalisation of Lie algebras) [3]. From this perspective,
it can be argued that many of the results that hold for crisp algebraic structures
also hold for their fuzzy version, and vice versa. We will describe this principle
in detail in the next section.

4 The Transfer Principle

In the field of model theory, the transfer principle posits that the validity of
statements within a given language for one structure implies their validity for
another structure within the same language.

Formally, the transfer principle allows one to transfer assertions from one
algebraic system to another. The completeness of an elementary theory A, i.e.,
a collection of closed formulas of first-order predicate logic, implies a transfer
principle for the models of A: every elementary sentence is true in all models of
A if it is true in at least one model.

The forerunner of this principle was Gottfried W. Leibniz (1646-1716), who
introduced an early version of it — although imprecise by present standards —
referred to as “the Law of Continuity”:

In any supposed transition, ending in any terminus, it is permissible to
institute a general reasoning, in which the terminus may also be included.
[10, pp. 902-903]

Leibniz’s law was the precursor of the interpretation of the transfer principle
that underlies modern infinitesimal calculus — although Leibniz presumed that
infinitesimals possessed properties analogous to those of finite numbers.
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The transfer principle can also be interpreted as a systematic formalisa-
tion of the principle of permanence (or the law of the permanence of equiva-
lent forms), which asserts that algebraic operations such as addition and mul-
tiplication should demonstrate uniform behaviour across all number systems,
particularly when expanding upon existing ones.

One of the applications of this method is in the field of unconventional anal-
ysis, which is known as non-standard analysis. In essence, the fundamental con-
cept of this non-standard approach methodology in mathematical analysis is
to construct a genuine arithmetic of infinitesimal numbers, thereby extending
the real numbers R to the non-standard real numbers ∗R. In fact, this non-
standard approach can be employed to extend any mathematical theory. In such
a context, one of the main questions concerns the properties that are preserved
(transferred) from R to ∗R, which ones are and which ones are not. It is unnec-
essary to provide a detailed account of the construction or its criticisms here.
Readers are directed to more comprehensive and renowned readings for further
information (see, e.g., [15] and [20]).

Michiro Kondo and Wieslaw Dudek in [13] applied the transfer principle in
order to translate the results of crisp algebras to fuzzy algebras (for a schematic
overview of the principle in question, please refer to Figure 4). Specifically, they
divided the results of crisp algebraic structures into four types, and it was demon-
strated that these types of propositions hold true for their fuzzy counterparts if
and only if they hold true for their crisp versions. These types are the following:

type 0: A subset A has a property P ;

type 1: If a subset A has a property P , then it has a property Q;

type 2: Let f : X → Y be a homomorphism. If a subset B of Y has a
property Q, then a subset f−1(B) of X has a property P ;

type 3: Let f : X → Y be a surjective homomorphism. If a subset A of X
has a property P , then a subset f(A) of Y has a property Q.

Fig. 4. Transfer principle for Lie algebras.
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To be more precise, such application of the transfer principle began at least
in 2003 in [9], a work by Young Bae Jun and Michiro Kondo. In this paper, the
authors introduce this method and utilise it for fuzzy BCK/BCI-algebras. It is
precisely in this context that they demonstrate how to extend certain concepts
to their fuzzy version and immediately obtain numerous results in the fuzzy
version, starting from crisp results. Hence, they showed that it is possible to
match any crisp algebra substructure to its fuzzy counterpart, and vice versa.
Their work led to some results in fuzzy Lie algebras such as those formalised
in [2, 7]. Moreover, one can generalise for fuzzy Lie algebras the result in [2,
Theorem 1.1, p. 8] by applying the transfer principle so far described. Here we
show an example of this.

Theorem 1. Every ideal of a Lie algebra is a Lie subalgebra.

Theorem 2 (Proposition 1.4 [2]). Every fuzzy Lie ideal is a fuzzy Lie subal-
gebra.

In light of the findings presented in the work [13], it appears that the pursuit
of analogous results to “crisp” algebraic structures for their fuzzified counter-
parts is an exercise in futility. However, this work also evidences that not all
propositions and results can be classified into the four types showed above. In
light of the aforementioned exposition and the accompanying historical observa-
tions, the next section will be devoted to the drawing of conclusions.

5 Conclusions

We have hitherto provided a concise overview of the history of the relationship
between fuzzy theory, from its origins to the fuzzification of algebraic structures,
and Lie algebras. Additionally, we described the more recent and intriguing
element in this context, namely the transfer principle, in detail in Section 4. In
particular, we provide some insight into the manner in which this principle has
already been employed in diverse contexts, including model theory, non-standard
analysis, and so forth. On the one hand, this principle offers a highly effective
method for constructing a fuzzy version of every proposition known from the
classical theory of Lie algebras, based on the crisp definition of a vector space,
and vice versa. Conversely, since the definition of fuzzy Lie algebras extends that
of the classic theory, some results can be appreciated in a natural way only in the
fuzzy context, whereas they are irrelevant to the matter in the crisp Lie algebras
(see, for example, [1, 14, 16, 24]).
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