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Vicenç Torra1[0000−0002−0368−8037]

1 Department of Computing Science, Ume̊a University, Sweden
2 Institute of Information Engineering, Automation and Mathematics,

Faculty of Chemical and Food Technology, Slovak University of Technology in
Bratislava, Slovakia

{zuzanao, vtorra}@cs.umu.se

Abstract. In this paper, we study measures arising as a result of the
Choquet integration with respect to a particular class of measures. The
initial insight is provided with several classes of additive and fuzzy mea-
sures. It can be seen that some classes are closed regarding the integra-
tion, e.g. probabilities, while some are not, such as distorted Lebesgue
measures. Knowing both an integration measure and a resulting measure
after the Choquet integration directly leads to a fuzzy analogue of the
Radon-Nikodym derivatives. For them, a completely different possible
approach to their existence is presented for a specific pair of measures.
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1 Introduction

In some real-life situations, a description of sets through additive measures is
not sufficient. To fully cover connections between sets, fuzzy (also nonadditive)
measures are used instead. The Choquet integral is proposed for integration with
respect to fuzzy measures, generalising the additive Lebesgue integral. These
fuzzy concepts have a broad scope of applications, such as decision-making,
finance, game theory and artificial intelligence, to list a few.

Although both mentioned notions are well-studied, this article aims to look
at them from a different perspective. It is possible to consider the result after the
Choquet integration as a measure, and thus we want to know more, preferably
its classification. So the prime question here is:

”What type of measure results after the Choquet integration
with respect to a particular measure?”

⋆ This work was partially supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Partial support from the KEMPE foundation is also gratefully acknowledged.
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With a knowledge of the specific type/class of the resulting measure, we directly
obtain its basic properties. Moreover, the measure type is also interesting for the
Choquet-Radon-Nikodym derivatives as a generalisation of the Radon-Nikodym
derivatives for fuzzy measures. There, an objective is to find the integrated func-
tion (derivative) when knowing the integration measure and the resulting mea-
sure after integration. These derivatives are the crucial part of the definitions
for divergences (e.g. Kullback-Leibler divergence, Total variation or Hellinger
distance) and also differential entropy.

Throughout the paper, we assume a measurable space (X,F) with X be-
ing a non-empty sample space and F a σ-algebra of all possible subsets of X.
Then, measure µ : F → [0,∞) is a set function assigning every subset of X
a nonnegative real number with additional condition µ(∅) = 0. A measure is
called additive if for any A,B ∈ F , A ∩ B = ∅ the additivity property holds
µ(A ∪ B) = µ(A) + µ(B). When additivity is weakened to only monotonic-
ity, so if for all A,B ∈ F , A ⊆ B it is satisfied that µ(A) ≤ µ(B), then the
measure is said to be fuzzy or nonadditive. Particular cases of fuzzy measures
are submodular and supermodular measures, where for all A,B ∈ F it holds
µ(A) + µ(B) ≥ µ(A ∪ B) + µ(A ∩ B) or µ(A) + µ(B) ≤ µ(A ∪ B) + µ(A ∩ B),
respectively. Functions are said to be measurable if for every t ∈ R it is satisfied
that {x ∈ X : f(x) < t} ∈ F .

Regarding integration, the Choquet integral is a fluent transition from ad-
ditive measures with the Lebesgue integral to fuzzy measures. Its definition for
any measurable nonnegative function on an arbitrary set A ⊆ X is given as

(C)

∫
A

g dµ =

n∑
i=1

gσ(i) 1A (µ[σ(i), . . . , σ(n)]− µ[σ(i+ 1), . . . , σ(n)])

in the discrete case with X = [n] = {1, . . . , n}, where σ : [n] → [n] is a permuta-
tion of function values taken as gσ(i) ≤ gσ(i+1) for all i ∈ [n] with the convention
σ(n+ 1) = 0 and 1A is the characteristic function of the set A, or as

(C)

∫
A

g dµ =

∫ ∞

0

µ ({x ∈ X : g(x) ≥ t} ∩A) dt

for the continuous case, as first proposed in [1] and later summarised e.g. in [2].

After the motivation and necessary preliminaries above, the paper consists
of two sections, structured as follows. In Section 2, we study measures resulting
from the Choquet integration with respect to particular types of measures. An
issue in Section 3 is the connection between the resulting and integration type
of measures and their possible closure. Also, a relation of this connection with
the Choquet-Radon-Nikodym derivatives is shown.
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2 A look at resulting measures

Let us consider measures built from measures through the Choquet integration.
For simplification, we use notation

νg,µ(A) = (C)

∫
A

g dµ,

where A ⊆ X is an integration set, g : A → R+
0 a measurable nonnegative

integrated function and µ : X → R+
0 an integration measure. Note that when µ

is additive, the Choquet integral reduces to the Lebesgue integral.

As stated in [2], the Choquet integral is additive if and only if the integration
measure is additive. In our context, it means that when taking additive integra-
tion measure µAD, the resulting measure after the Choquet integration is also
additive, so the additivity property holds

(∀A,B ∈ F , A ∩B = ∅) νg,µAD
(A ∪B) = νg,µAD

(A) + νg,µAD
(B).

Moreover, we can say that with the integration measure being fuzzy µF , also
the resulting measure is fuzzy. Then the additivity property is replaced by the
weaker property of monotonicity

(∀A,B ∈ F , A ⊆ B) νg,µF
(A) ≤ νg,µF

(B).

Is it also possible to show something similar about the resulting measure after the
integration for specific classes within additive or fuzzy measures? In other words,
does integrating with respect to one measure always result in another measure
from the same class? Let us find an answer in the following parts, separately for
some particular types of measures.

We start with additive measures, where the Choquet integral naturally re-
duces to the additive Lebesgue integral. First, we take the probability measure

µP . It is given as µP (A) =
∑
x∈A

p(x) on the discrete space and as µP (A) =

∫
A

p dλ

on the continuous space, with λ being the Lebesgue measure, p the correspond-
ing density function and an additional condition of normalisation µP (X) = 1
needs to be satisfied.

Proposition 1. The measure νg,µP
in the discrete case corresponds to µg∗P

where g ∗ P stands for (g ∗ P )(A) =
∑
x∈A

g(x)p(x).

The result is easy to see since νg,µP
(A) =

n∑
i=1

gσ(i) 1A p(σ(i)) =
∑
x∈A

g(x) p(x).

The same result is obtained when taking the continuous case, only there g ∗ P
stands for (g ∗ P )(A) =

∫
A

g p dλ. Hence, the summary can be done for the

probability measure on the general space.
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Theorem 1. The measure νg,µP
corresponds to µg∗P .

If an additional condition of
∑
x∈X

g(x)p(x) = 1 or

∫
X

g pdλ = 1 is satisfied in

the corresponding setup, measure µg∗P is a probability measure.

Now, we look at the additive counting measure µ# (equivalent to Lebesgue
measure in the discrete case) defined as µ#(A) = |A| for all finite sets.

Proposition 2. The measure νg,µ#
corresponds to µP , where p ≡ g.

The result is obvious because νg,µ#
(A) =

n∑
i=1

gσ(i) 1A(i + 1 − i) =
∑
x∈A

g(x).

In the continuous case, we assume Lebesgue measure λ as an equivalent to the
counting measure and get the same result.

Proposition 3. The measure νg,λ corresponds to µP with p ≡ g.

Again, with an additional condition
∑
x∈X

g(x) = 1 or

∫
X

g dλ = 1, the result-

ing measure is a probability measure.

From now on, we focus on fuzzy measures. From properties of the Choquet in-
tegral for nonnegative functions in [2], it is easy to see that taking a submodular
measure µsubmod results in measure νg,µsubmod

being submodular (also subaddi-
tive and convex). Similarly, with a supermodular measure µsupermod, measure
νg,µsupermod

is supermodular (also superadditive and concave).

The first class of fuzzy measures we assume is unanimity measures in a gen-
eralised fashion. We denote them as µA0,k0

for a fixed constant k0 ∈ (0, 1] (case
with k = 0 leads to zero measure) and a fixed set A0 ⊆ X, and define as

µA0,k0
(A) =

{
k0, A ⊇ A0

0, A ⊂ A0

. If k0 = 1, shorter notation µA0
is used. Notice

that minimal fuzzy measure can be seen as a special case with the formula

µmin(A) ≡ µX(A) =

{
1, A = X

0, A ⊂ X
. Inductively going from particular examples

to the whole class, the following propositions study the integration result.

Proposition 4. The fuzzy measure νg,µX
corresponds to µX,k0

for a certain k0.

Proof. The idea of the proof can be simply outlined in the discrete case. It is
necessary to realise that measure µX is non-zero only when all the elements of
X are included. That corresponds to the term with σ(1)-st function value, so the
smallest one. Thus more generally, if A ̸= X then νg,µX

(A) = 0, and if A = X

then νg,µX
(X) = (C)

∫
X

g dµX = min
x∈X

g(x). Therefore for k0 = min
x∈X

g(x) we have

νg,µX
= µX,k0 .
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Similarly, it can also be done for µA0
. The measure is zero for all smaller sets

than A0, so if A ⊂ A0 then νg,µA0
(A) = 0. The case with A = A0 corresponds

to A = X in the previous proposition. Hence, the result after integration is
the smallest value of a function on A0, resulting in νg,µA0

(A0) = min
x∈A0

g(x). For

bigger sets than A0, the measure is equal to 1. In the discrete case, which is
more illustrative here, it means that the difference of measures in the definition
is zero everywhere but in the one term corresponding to the smallest function
value on the set A0. So, for any A ⊃ A0 it holds νg,µA0

(A) = min
x∈A0

g(x). The

final result is summarised in the next proposition.

Proposition 5. The fuzzy measure νg,µA0
corresponds to µA0,k0 when taking

k0 = min
x∈A0

g(x).

The most general case of this class of measures can be derived similarly as
in the last proposition. The only difference is a height of the jump (difference
between corresponding measures in the discrete definition), which is not equal
to 1 but to k.

Theorem 2. The fuzzy measure νg,µA0,k
corresponds to µA0,k0 when assuming

k0 = k min
x∈A0

g(x).

With these results, we can say that the resulting measure after the Choquet
integration with respect to µA0,k0

is of the same type.

Similar to µmin (minimal measure) introduced above is the maximal measure

given as µmax(A) =

{
1, A ⊃ ∅
0, A = ∅

. Strictly speaking, it is not a special case of the

previous class µA0,k0
in the form of µ∅. The reason is that taking A0 = ∅ means

that the zero value is assigned to every set, so we should have the trivial zero
measure, which is clearly not true. For the purpose of the following proposition,
recall that µπ is a possibility (also maxitive) measure with π : X → R+

0 given as
µπ(A) = max

x∈A
π(x).

Proposition 6. The fuzzy measure νg,µmax
corresponds to µπ with π(x) ≡ g(x).

Proof. First, we assume the discrete case for more illustrative insight. This mea-
sure changes its value just for the empty set, so the only non-zero term in the
Choquet integral definition is obtained when subtracting the smallest and empty
set. That corresponds to the σ(n)-th function value, hence the biggest one. Then
more generally, if A = ∅ it is clear that νg,µmax

(A) = 0. For other sets A, we
have νg,µmax

(A) = max
x∈A

g(x). In particular, νg,µmax
({x}) = g(x).

Now, restricting ourselves to X = R, let us take the class of distorted
Lebesgue measures denoted as λm. With λ being the Lebesgue measure and
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m : R+
0 → R+

0 a nondecreasing (sometimes taken as strictly increasing) distortion
where m(0) = 0, the measure is defined as λm([a, b]) = m(λ([a, b])) = m(b− a).
For a simplifying approach, we focus on monotone functions as in [3], yet us-
ing computational formulas for a more general setup from [4]. So, assuming
nonnegative monotone continuous functions and differentiable distortions, com-
putationally convenient formulas for the Choquet integral on an arbitrary set
[s, τ ] ⊆ R, τ > s are given

- for nondecreasing function g as

νg,λm
([s, τ ]) =

∫ τ

s

m′(τ − α) g(α) dα (1)

- for nonincreasing function g as

νg,λm
([s, τ ]) =

∫ τ

s

m′(α− s) g(α) dα. (2)

Remark 1. Even though we are restricted to only monotone functions here, our
conclusions are not necessarily less general. The reason is a reordering method
proposed in [5] and [6], which reorders a non-monotone function with respect to
a distorted Lebesgue measure to a monotone one without changing its Choquet
integral value. The method can be sketched as follows. Let us assume a non-
monotone continuous function g : R+

0 → R+
0 on a set [0, τ ], where ĝ = max

0≤x≤τ
g(x).

Defining λg : [0, ĝ] → [0, τ ] as λg(α) = t = τ − λ({x : g(x) ≥ α}), a function
g∗ : [0, τ ] → [0, ĝ] given as g∗(t) = α = λ−1

g (t) is called a rearrangement of g.

Moreover (C)

∫
[0,τ ]

g∗ dλm = (C)

∫
[0,τ ]

g dλm. Since g∗ is a nondecreasing and

continuous function with the same value of the Choquet integral as the original
non-monotone function g, the computational formula (1) can be used. Even more
general case of reordering is proposed in [4].

Thinking about the resulting measure after the Choquet integration with
distorted Lebesgue measures, a hypothesis may be that νg,λm

corresponds to
another distorted Lebesgue measure with a different distortion, let us say λn.
Consequently, if it is correct, the value of the Choquet interval for an arbitrary
function and an arbitrary distortion should be the same for all intervals of the
same length because it is the property of distorted Lebesgue measures. The
following example shows a sketch of this idea in a particular setup.

Example 1. Let us take two real intervals [0, τ ] and [τ, 2τ ], τ > 0, where clearly
λm([0, τ ]) = λm([τ, 2τ ]). Then, assuming an increasing function g1(x) = ex and
a distortion m(x) = x2, we use the formula (1) to compute the Choquet integral

for both intervals. Thus, νg1,λm
([0, τ ]) =

∫ τ

0

2(τ − α) eα dα = 2eτ − 2τ − 2 and

similarly νg1,λm([τ, 2τ ]) =

∫ 2τ

τ

2(2τ − α) eα dα = 2e2τ − 2τeτ − 2eτ . Comparing
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these two results, they are apparently not equal for any τ > 0.
Analogously, the computation can be done for a decreasing function g(x) = e−x

and the same distortion using the formula (2). Then, for both intervals we can

compute the values as νg2,λm([0, τ ]) =

∫ τ

0

2α e−α dα = 2 − 2τe−τ − 2e−τ and

νg2,λm([τ, 2τ ]) =

∫ 2τ

τ

2(α − τ) e−α dα = 2e−τ − 2τe−2τ − 2e−2τ . Again, these

two results are not equal for any τ > 0.

From Example 1, we can conclude that νg,λm does not correspond in general
to any distorted Lebesgue measure since the results for two intervals of the same
length are not equal. Although, based on particular examples and our intuition,
it is possible to propose a hypothesis.

Hypothesis 1 The fuzzy measure νg,λm corresponds to µPn with Pn being a
distorted probability with a corresponding distortion n (maybe except for the nor-
malisation condition).

3 Closure regarding the integration

It can be said that if µ as an integration measure and νg,µ as a resulting measure
after the integration are from the same class, then this class is closed regarding
the Choquet integration. Table 1 summarises related results from the previous
section, adding information on whether or not the particular class of measures
is closed.

Integration measure Resulting measure
Closed?

µ νg,µ

µAD µAD ✓

µP µP ✓

µ# / λ µP ✗

µF µF ✓

µsubmod µsubmod (µsubadd / µconvex) ✓

µsupermod µsupermod (µsuperadd / µconcave) ✓

µA0,k µA0,k0 ✓

µmax µπ ✗

λm ?Pn? ✗

Table 1. Pairs of measures connected through the Choquet integration.

At this stage, it is interesting to point out a connection between closed classes
of measures after the Choquet integration and the Choquet-Radon-Nikodym
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(CRN) derivatives. These derivatives were studied mostly in [3], [6], [7], and as
the naming suggests, they generalise the additive Radon-Nikodym derivatives
for fuzzy measures. The CRN derivative can be seen as an inverse approach to
the Choquet integral computation. Using our notation for the Choquet integral
and a notation for the CRN derivatives from [7], it can be written that

νg,µ(A) = (C)

∫
A

g dµ ⇐⇒ g =
dνg,µ
dµ

.

So, the basic idea behind the CRN derivatives is that we know both an inte-
gration measure µ and a resulting measure νg,µ and want to find an integrated
function g. However, even conditions for the existence of the CRN derivatives
are either too complicated - the strong decomposition property in [8], or too
strict - submodularity of both measures in [9].

This article opens a new possibility on how to look at the CRN derivatives
from another perspective, which is connected directly with the better-studied
concept of the Choquet integral and its computation. We can propose some pre-
liminary results considering the corresponding pairs of integration and resulting
measures obtained in this article. In some cases, such as probabilities in Theo-
rem 1 or generalised unanimity measures in Theorem 2, we know that the CRN
derivatives exist and have also found particular forms for the measures. On the
other hand, although some classes of measures are closed under the Choquet in-
tegration, e.g. submodular or supermodular measures, nothing can be said even
about the existence of the CRN derivatives in general because the class is too
broad to propose any specific results. Possibly the most interesting classes of
measures are those not closed regarding the Choquet integration, for instance
distorted Lebesgue measures as shown in Example 1. What can be concluded
about the CRN derivatives and their existence for these classes?

Hypothesis 2 If a class of measures is not closed regarding the Choquet inte-
gration, then the CRN derivative corresponding to any two measures from this
class equals a constant.

An intuition behind this idea can be illustrated on the class of distorted
Lebesgue measures. Since it is not closed with respect to the Choquet inte-
gration, the easiest (and probably the only) way to get a distorted Lebesgue
measure also as a resulting measure is to integrate a (positive) constant, so then

(C)

∫
A

k dλm = k λm(A) = λn(A) with n(x) = km(x). Notice, that this is not a

violation of our previous Hypothesis 1 because distorted Lebesgue measures can
be seen as a trivial case of distorted probabilities with p(x) = x (only without
the normalisation condition as suggested in the hypothesis).

4 Conclusion

As a continuation of this article, more classes of fuzzy measures could be studied.
A key to a better understanding and further results of the concepts presented
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here is proving (or disproving) the Hypotheses 1 and 2. They represent interest-
ing notions regarding the Choquet integration and its closure. Also, they provide
a better insight into the Choquet-Radon-Nikodym derivatives, their conditions
for existence and possible computational formulas.
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