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Abstract. We generalise the idea of distortion models to the case where
the starting model is an imprecise probability model instead of a precise
probability. Specifically, we discuss the transformation of a lower proba-
bility or a credal set into a more imprecise model, and analyse a number
of desirable properties any such transformation should satisfy. Then, we
investigate in detail the extension of the total variation distortion model
from this perspective.
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1 Introduction

In situations of imprecise or ambiguous information, when we have missing data
or when we should aggregate the different opinions of several experts, it may
be sensible to consider an alternative to probability measures as a model of the
uncertainty associated with an experiment. In the past decades, this idea has
given rise to a number of imprecise probability models, such as coherent lower
probabilities and previsions [21], belief functions [18] or possibility measures [7],
just to name a few.

One context where imprecise probabilities arise naturally is when we con-
sider distortion models. By this, we mean a model where a precise probability
measure is transformed into an imprecise one by means of some distorting func-
tion d and considering some distortion factor δ that may represent the degree
of robustness we are aiming for. Depending on the procedure, several different
models have been proposed in the literature, such as the ϵ-contamination [10],
pari-mutuel [21] or total variation models [9]. On the other hand, the term dis-
tortion also appeared in [3] as a direct transformation of a probability measure
expressing a human misperception of a probability measure; a unified study of
the main approaches can be found in [15, 16].

There are however scenarios in which it may be sensible to have an imprecise
probability model as a starting point: for instance, it may be that the available
information does not allow to come up with a precise model, and yet we may
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want to robustify it; it could also be that the model suffers from some inconsis-
tencies that we want to correct by making it more imprecise; or we could also
want to transform our model into another that is more operational, while at the
same time not removing any precise probability measure that has been deemed
possible in our original formulation. In any of those cases, we would like to have
a procedure that transforms our model into a more imprecise one, and where we
are also able to quantify the degree of distortion we are introducing.

We should mention here that the idea of distorting an imprecise model is
not new. Indeed, it appeared under the terminology of discounting in the field
of Evidence Theory [18], where a belief function is combined with a vacuous
model. Following this terminology, Seraf́ın Moral [17] discussed the problem of
distorting sets of probabilities from an axiomatic point of view, and analysed
some instances, among which is the total variation model. Our focus here will be
instead on lower probabilities and we shall also consider other rationality axioms.
A somewhat closer approach to ours would be that of Sébastien Destercke [6],
where a discounting rule for lower probabilities is defined, inspired by a rule
established in [13] in the context of the transferable belief model.

The paper is organised as follows. After recalling some elementary notions
about imprecise probabilities in Sect. 2, we analyse two avenues for this problem:
the direct distortion of the lower probability or the aggregation of the distortions
of the elements of its associated credal set. These possibilities and a number of
desirable properties we may impose are discussed in Sect. 3. Our analysis is
exemplified on the extension of the total variation distortion model in Sect. 4.
Finally, we give some concluding remarks and additional insights in Sect. 5.

2 Preliminary concepts

Let us give the basics of the theory of imprecise probabilities we shall use in the
paper; we refer to [1] for a more detailed introduction.

Let X be a finite possibility space. Any function P : P(X ) → [0, 1] that is
monotone (A ⊆ B ⇒ P (A) ≤ P (B)) and normalised (P (∅) = 0 and P (X ) = 1)
is called a capacity (see for example [8]). In this paper, we shall also call it lower
probability, because the value P (A) for an event A may be interpreted as a lower
bound for the probability of A under a ‘true’, but unknown, probability measure
P0. Under this interpretation, we may consider the set of probability measures
compatible with P , given by

M(P ) := {P ∈ P(X ) : P (A) ≥ P (A) ∀A ⊆ X}, (1)

where P(X ) denotes the set of probability measures on X . Then we say that a
lower probability P avoids sure loss when the set M(P ) it determines by means
of Eq. (1) is non-empty, and that it is coherent when

P (A) = min{P (A) : P ∈ M(P )} ∀A ⊆ X .

The set M(P ) is a closed and convex set of probability measures, and as a
consequence it is a credal set in the sense of Levi [11].
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There are a number of particular cases of coherent lower probabilities that
are of interest. We have for instance the 2-monotone ones, that satisfy

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B) ∀A,B ⊆ X ;

the k-monotone ones satisfy, for any p ≤ k and A1, . . . , Ap ⊆ X , the inequality

P

(
p⋃

i=1

Ai

)
≥

∑
I⊆{1,...p}

(−1)|I|+1P

(⋂
i∈I

Ai

)

and the minitive ones, also known as necessity measures within possibility the-
ory [7], that satisfy P (A ∩ B) = min{P (A), P (B)} for any A,B ⊆ X . It turns
out that minitive lower probabilities are k-monotone for any k ∈ N, and these in
fact satisfy 2-monotonicity. On the other hand, 2-monotone lower probabilities
also satisfy the rationality condition of coherence.

More generally, we can consider lower previsions; these give lower expecta-
tions to real valued functions f : X → R, called gambles. An instance of gambles
are the indicator functions IA of events A ⊆ X , which take the value 1 on the
elements of A and 0 elsewhere. We denote by L(X ) the set of all gambles on X .

A lower prevision on L(X ) is a function P : L(X ) → R. We say that it is
coherent if and only if

P (f) = min
P∈M(P )

EP (f) ∀f ∈ L(X ), where

M(P ) :=
{
P ∈ P(X ) : EP (f) ≥ P (f) ∀f ∈ L(X )

}
and EP denotes the expectation operator with respect to P . While a probabil-
ity measure has a unique extension as an expectation operator, this is not the
case for coherent lower probabilities: two different coherent lower previsions may
have the same restriction to indicators of events. One property that guarantees
uniqueness is 2-monotonicity: if the coherent lower prevision satisfies

P (f ∧ g) + P (f ∨ g) ≥ P (f) + P (g)

for any f, g ∈ L(X ), then it can be computed as the Choquet integral with
respect to its restriction to events [4].

3 Distortions of imprecise models

When robustifying a probability measure into an imprecise probability model,
two approaches can be followed. As discussed in [15, 16], a distortion model
transforms a probability measure P0 into a lower probability P by means of
two elements: a distortion factor δ > 0 and a distorting measure d that com-
pares probability measures, such as a distance or a divergence. With these tools,
the distorted lower probability may be obtained as the lower envelope of the
neighbourhood

Bδ
d(P0) = {Q ∈ P(X ) : d(Q,P0) ≤ δ},
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i.e., as Q(A) = inf{P (A) : P ∈ Bδ
d(P0)}. Alternatively, the distorted lower

probability may be obtained by directly applying a function on P0. Given a
distortion parameter δ > 0 and some function fδ : [0, 1] → [0, 1] that is monotone
and satisfies fδ(0) = 0, fδ(1) = 1, the lower probability would be defined as
P (A) = fδ(P0(A)) for any A ⊆ X . This procedure was introduced in [3] for
representing the imprecise observation of a probability measure and it has been
investigated in [2, 5].

For any distortion procedure for probability measures, we may consider its
generalisation towards lower probabilities P . We may follow here two avenues:

(a) The first of them would be to distort each of the probability measures in
M(P ), and to consider the lower envelope of the set of lower probabili-
ties thus obtained; note however that this method is only applicable when
M(P ) ̸= ∅, i.e., when P avoids sure loss. Moreover, when P avoids sure
loss and it is not coherent, the procedure will not distinguish between the
distortion of a lower probability P and its natural extension E, which is the
coherent lower probability that is the lower envelope of M(P ).

(b) For this reason, it may be interesting also to consider a distortion procedure
that applies directly on a lower probability P , irrespective on the properties it
satisfies. In this sense, if the distortion of a probability measure P0 produces
the lower probability fδ(P0), the idea would be to consider fδ(P ) as the
lower probability that on the event A takes the value fδ(P (A)).

Whichever the approach, there are a number of desirable properties that our
distortion procedure may satisfy. For this, let Q

δ
(P ) denote the distorted model

that our procedure determines if we start from a distortion factor δ > 0 and a
lower probability P . We consider the following:

P1.Expansion: Given δ1 > δ2 > 0, Q
δ1
(P ) ≤ Q

δ2
(P ).

P2.Aggregation: For any δ1, δ2 > 0, Q
δ1+δ2

(P ) = Q
δ1

(
Q

δ2
(P )
)
.

P3.Structure preservation: If P is coherent (resp., 2-monotone, k-monotone,
minitive) so is Q

δ
(P ) for every δ > 0.

P4.Commutativity: If P is coherent, then for any δ > 0

M
(
Q

δ
(P )
)
=

⋃
P∈M(P )

M
(
Q

δ
(P )
)
,

where Q
δ
(P ) refers to the particular case in which the distortion procedure

is applied to a probability measure P .

The idea of expansion has already been discussed by Moral in [17] in the context
of discounting of credal sets, while the notion of structure preservation is also
present in the work of Destercke [6]. On the other hand, the idea of commutativ-
ity corresponds to what Destercke calls lower probability preservation. In what
follows, we shall investigate these properties in more detail in an example of a
distortion procedure: the generalization of the total variation model.

In the following, and when no confusion is possible, we shall simplify the
notation using Q to denote the lower probability Q

δ
(P ).
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4 The imprecise total variation

Next, we apply the ideas put forward in the previous section to analyse the
extension of the total variation distortion model to the imprecise case. Recall
that, given P,Q ∈ P(X ), their total variation distance [12] is given by

dTV(P,Q) = max
A⊆X

|P (A)−Q(A)|.

Using this distance, a probability measure P and a distortion factor δ > 0, the
lower envelope of the ball Bδ

dTV
(P ) coincides with the credal set M

(
Q

P

)
, where

Q
P
is given by [9]

Q
P
(A) = max{P (A)− δ, 0} ∀A ⊂ X , Q

P
(X ) = 1. (2)

We refer to [9] and [16, Sect.2] for a thorough study of this model.

4.1 First approach: distortion of the lower probability

The total variation model can be straightforwardly extended towards arbitrary
lower probabilities.

Definition 1. Let P be a coherent lower probability and δ > 0. The total vari-
ation model induced by (P , δ) is the lower probability Q given by

Q(A) = max
{
P (A)− δ, 0

}
∀A ⊂ X , Q(X ) = 1. (3)

Clearly, this definition is a generalisation of that in Eq. (2). Interestingly, it has
appeared, in the context of coalitional game theory, as the strong δ-core [19].
We refer to [8, 14, 20] for more information about the connections between game
theory and imprecise probabilities.

Let us study this distortion model from the point of view of the proper-
ties discussed in Sect. 3. In this respect, it is clear that Eq. (3) complies with
expansion (P1). Concerning aggregation, note that for any A ⊂ X it holds that

max{P (A)− δ1 − δ2, 0} = max{max{P (A)− δ2, 0} − δ1, 0},

whence (P2) holds.
With respect to structure preservation (P3), we have the following result.

Proposition 1. Let P be a coherent lower probability, δ > 0 and let Q be the
lower probability they induce by Eq. (3). If P has any of the following properties:

(i) avoiding sure loss,
(ii) coherence,
(iii) 2-monotonicity,
(iv) minitivity,

so does Q.
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Proof. (i) Since by construction M(P ) ⊆ M(Q), if P avoids sure loss then
M(P ) ̸= ∅, whence M(Q) ̸= ∅ and therefore Q avoids sure loss as well.

(ii) Assume that P is coherent. For any P ∈ M(P ), let Q
P
denote the coherent

lower probability it induces by means of Eq. (2). It holds that M(Q
P
) ⊆

M(Q), given that Q
P
≥ Q by construction.

Given A∗ ⊂ X , we aim to prove that there exists Q ∈ M(Q) such that
Q(A∗) = Q(A∗). By coherence of P , there exists P ∗ ∈ M(P ) such that

P ∗(A∗) = P (A∗). Since Q
P∗ is coherent, there exists Q ∈ M

(
Q

P∗

)
⊆

M
(
Q
)
such that Q(A∗) = Q

P∗(A
∗). Hence,

Q(A∗) = max{0, P (A∗)− δ} = max{0, P ∗(A∗)− δ} = Q
P∗(A

∗) = Q(A∗).

We conclude that Q is coherent.
(iii) Assume that P is 2-monotone, meaning that for any A,B ⊂ X it satisfies

(P (A ∩B)− δ) + (P (A ∪B)− δ) ≥ (P (A)− δ) + (P (B)− δ). Let us show
that Q is 2-monotone as well. We have the following cases:
Case 1 Assume that P (A∪B)−δ ≤ 0. By monotonicity, P (A∩B)−δ ≤ 0,

P (A)− δ ≤ 0 and P (B)− δ ≤ 0. Hence, Q(A ∩B) +Q(A ∪B) = 0 =
Q(A) +Q(B).

Case 2 If P (A∩B)−δ > 0, it follows that P (A∪B)−δ > 0, P (A)−δ > 0
and P (B)− δ > 0, whence

Q(A ∩B) +Q(A ∪B) =
(
P (A ∩B)− δ

)
+
(
P (A ∪B)− δ

)
≥
(
P (A)− δ

)
+
(
P (B)− δ

)
= Q(A) +Q(B).

Case 3 Finally, assume that P (A ∩ B) − δ ≤ 0 and P (A ∪ B) − δ > 0.
Then

Q(A ∩B) +Q(A ∪B) = P (A ∪B)− δ.

If P (B) − δ ≤ 0 (respectively, P (A) − δ ≤ 0), then P (A ∪ B) − δ ≥
P (A)− δ (respectively, P (B)− δ) by monotonicity, whence

Q(A ∩B) +Q(A ∪B) ≥ Q(A) +Q(B).

When, instead, both P (B)− δ and P (A)− δ are greater than or equal
to zero, the 2-monotonicity of P yields:

Q(A ∩B) +Q(A ∪B) = P (A ∪B)− δ

≥
(
P (A)− δ

)
+
(
P (B)− δ

)
−
(
P (A ∩B)− δ

)
≥
(
P (A)− δ

)
+
(
P (B)− δ

)
= Q(A) +Q(B).

(iv) Let P be minitive, so that P (A∩B) = min{P (A), P (B)} for every A,B ⊂
X . Given A,B ⊂ X , if δ > 0 is such that P (A ∩B)− δ ≥ 0, then

Q(A∩B) = P (A∩B)−δ = min{P (A)−δ, P (B)−δ} = min{Q(A), Q(B)}.

When, instead, P (A∩B)−δ ≤ 0, then either P (A)−δ ≤ 0 or P (B)−δ ≤ 0,
whence Q(A) = 0 or Q(B) = 0 and as a consequence Q(A ∩ B) = 0 =
min{Q(A), Q(B)}. From this we conclude that Q is minitive as well. ⊓⊔
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In spite of this positive result, not all properties of P hold onto Q. Observe for
instance that, when P is a precise probability measure (that is in particular k-
monotone for all k), the lower probability it determines need not be k-monotone
for k > 2, as shown in [16, Ex. 2.1]. See also [2, Prop. 5] for other interesting
comments in this respect.

To see whether the procedure in Definition 1 complies with commutativity
(P4), we next investigate the approach based on distorting each element in the
credal set.

4.2 Second approach: distortion of the elements in the credal set

The extension of the total variation model towards lower probabilities may also
be approached in terms of the distortion of credal sets, in the following manner:
for any P ∈ M(P ) we may consider the credal set M(Q

P
), where Q

P
is given

by Eq. (2). The dominance P ≥ P leads immediately to the inclusion M(Q
P
) ⊆

M(Q), whence ∪P∈M(P )M(Q
P
) ⊆ M(Q). If we denote by Q′ the coherent lower

probability defined as1

Q′(A) = min

{
Q(A) : Q ∈

⋃
P∈M(P )

M(Q
P
)

}
∀A ⊆ X , (4)

it follows thatQ′ ≥ Q. It is not difficult to show that these two lower probabilities
coincide on events.

Proposition 2. Let P be a coherent lower probability, δ > 0 and Q,Q′ the lower

probabilities induced by Eqs. (3) and (4). Then Q′ = Q.

Proof. The equality is trivial for A = X , so let us fix an event A ⊂ X . Since
P is coherent, there exists some P ∗ ∈ M(P ) such that P ∗(A) = P (A). By
construction Q′ ≤ Q

P∗ , hence

Q′(A) ≤ Q
P∗(A) = max{P ∗(A)− δ, 0} = max{P (A)− δ, 0} = Q(A).

Since on the other hand Q′ ≥ Q, we deduce that they are equal. ⊓⊔

The set ∪P∈M(P )M(Q
P
) corresponds to the discounting credal set from the

total variation distance proposed in [17]; interestingly, it is established in [17,
Thm. 4.1] a connection with the distortion of sets of almost-desirable gambles,
which are another imprecise probability model we are not considering in this
paper.

We can more succinctly express ∪P∈M(P )M(Q
P
) by defining a suitable

(pre)metric extending the TV distance. Indeed, for any two lower probabili-
ties P ,Q avoiding sure loss, we may define dmin

TV as the minimum of the total

1 That this is indeed a minimum and not an infimum holds because
⋃

P∈M(P ) M(Q
P
)

is closed, as we shall establish in Proposition 3 later on.
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variation distances between the probabilities in their respective credal sets:

dmin
TV (P ,Q) = min

P∈M(P )
Q∈M(Q)

dTV(P,Q) = min
P∈M(P )
Q∈M(Q)

max
A⊆X

|P (A)−Q(A)|.

Note that dmin
TV is not a distance: for instance, it will be dmin

TV (P ,Q) = 0 as soon
as M(P )∩M(Q) ̸= ∅, and it does not satisfy the triangle inequality in general.
Indeed, it can be checked that it is only a premetric.

Given the lower probability P and δ > 0, dmin
TV determines the neighbourhood

Bδ
dmin
TV

(P ) = {Q ∈ P(X ) : dmin
TV (Q,P ) ≤ δ}

= {Q ∈ P(X ) : ∃P ∈ M(P ) such that dTV(Q,P ) ≤ δ}. (5)

It is not difficult to prove that Bδ
dmin
TV

(P ) coincides with ∪P∈M(P )M(Q
P
). Let

us establish that this set is closed and convex:

Proposition 3. Let P be a coherent lower probability and δ > 0 a distortion
factor. The ball Bδ

dmin
TV

(P ) given by Eq. (5) is closed and convex.

Proof. We begin by showing thatBδ
dmin
TV

(P ) is closed. Consider a sequence (Qn)n ⊂
Bδ

dmin
TV

(P ) such that (Qn)n → Q for some Q ∈ P(X ), and let us show that

Q ∈ Bδ
dmin
TV

(P ). That (Qn)n ⊂ Bδ
dmin
TV

(P ) implies that for every n ∈ N there exists

Pn ∈ M(P ) such that dTV(Qn, Pn) ≤ δ. The sequence (Pn)n is included in the
compact set M(P ), which is also sequentially compact; as a consequence, there
exists a subsequence (Pnk

)k such that (Pnk
)k → P for certain P ∈ M(P ). Then:

dTV(P,Q) = dTV

(
lim
k→∞

Pnk
, lim
k→∞

Qnk

)
= lim

k→∞
dTV(Pnk

, Qnk
) ≤ δ,

using for the second equality that dTV is continuous. Thus, Q ∈ Bδ
dmin
TV

(P ).

To see that Bδ
dmin
TV

(P ) is convex, let Q1, Q2 ∈ Bδ
dmin
TV

(P ) and α ∈ [0, 1]. Then,

there exists Pi ∈ M(P ) such that dTV(Pi, Qi) ≤ δ for i = 1, 2. Since M(P ) is
convex, αP1 + (1− α)P2 ∈ M(P ). By the convexity of dTV,

dTV(αQ1 + (1− α)Q2, αP1 + (1− α)P2)

≤ αdTV(P1, Q1) + (1− α)dTV(P2, Q2) ≤ δ,

and as a consequence αQ1 + (1− α)Q2 ∈ Bδ
dmin
TV

(P ). ⊓⊔

Next we show a somewhat surprising result: the two distortion procedures so
far introduced do not coincide in general, and Bδ

dmin
TV

(P ) may be a proper subset

of M(Q). This means that while Q′ and Q agree on events, they will not agree
on gambles in general. In other words, the first procedure does not satisfy com-
mutativity. From the practical viewpoint, this means that while both approaches
agree on events, the approach based on dmin

TV produces a more informative lower
prevision; notwithstanding,M(Q) is the credal set of a lower probability, making

it easier to handle than Bδ
dmin
TV

(P ).
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Example 1. Let X = {x1, x2, x3, x4, x5, x6}, and define the coherent lower prob-
ability P as the lower envelope of {P1, . . . , P17}, where the mass functions of
these probability measures are given by

A {x1} {x2} {x3} {x4} {x5} {x6}
P1(A) 0.2 0.061 0.061 0.19 0.199 0.289
P2(A) 0.161 0.1 0.1 0.238 0.141 0.26
P3(A) 0.239 0.099 0.12 0.161 0.17 0.211
P4(A) 0.161 0.177 0.13 0.161 0.102 0.269
P5(A) 0.22 0.041 0.109 0.21 0.199 0.221
P6(A) 0.22 0.041 0.041 0.23 0.199 0.269
P7(A) 0.178 0.16 0.111 0.161 0.1 0.29
P8(A) 0.161 0.157 0.14 0.181 0.073 0.288
P9(A) 0.19 0.073 0.078 0.21 0.15 0.299
P10(A) 0.161 0.158 0.159 0.161 0.112 0.249
P11(A) 0.2 0.071 0.14 0.199 0.199 0.191
P12(A) 0.161 0.177 0.138 0.161 0.073 0.29
P13(A) 0.239 0.071 0.1 0.189 0.199 0.202
P14(A) 0.22 0.041 0.081 0.238 0.199 0.221
P15(A) 0.219 0.119 0.061 0.161 0.17 0.27
P16(A) 0.218 0.043 0.062 0.238 0.168 0.271
P17(A) 0.2 0.0705 0.1585 0.1805 0.199 0.1915

Take now the distortion factor δ = 0.011 > 0 and let Q be the distorted model
determined by P , δ by means of Eq. (2). Consider also the probability measure
Q with probability mass function

Q := (0.2, 0.05, 0.05, 0.201, 0.199, 0.3) ∈ M(Q).

Since Q({x1, x2}) = 0.25 < P ({x1, x2}) = 0.261, we deduce that Q ∈ M(Q) \
M(P ). To see that there is no P ∈ M(P ) such that dTV(Q,P ) ≤ δ, observe
that Q(A) = P (A) − δ for the events A = {x1, x2}, {x1, x3}, {x2, x3, x4},
{x1, x2, x3, x4} and {x2, x3, x4, x5}. Then, if P ∈ M(P ) satisfied dTV(Q,P ) ≤ δ
then it should be P (A) = P (A) on those events. Thus, it should be

P ({x1, x2}) = P ({x1, x3}) = 0.261, P ({x2, x3, x4}) = 0.312

P ({x1, x2, x3, x4}) = 0.512, P ({x2, x3, x4, x5}) = 0.511.

But all these conditions imply that P should be given by the mass function
P1 = (0.2, 0.061, 0.061, 0.19, 0.199, 0.289) ∈ M(P ), and this probability measure
satisfies dTV(Q,P1) = 0.22 > 0.11 = δ. Therefore, Q ̸∈ Bδ

dmin
TV

(P ) and as a

consequence M(Q) ⊋ Bδ
dmin
TV

(P ). ♦

The two credal sets coincide when the original model satisfies 2-monotonicity.

Proposition 4. Let P be a 2-monotone lower probability, δ > 0 and let Q be

the lower probability defined by Eq. (3). Then, M(Q) = Bδ
dmin
TV

(P ).
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Proof. Let H ⊆ L(X ) be the set of gambles that take values in [0, 1]. Given a
probability measure Q, let us define the map

fQ : M(P )×H → R
(P, g) ↪→ P (g)−Q(g).

We shall prove that we can apply the minimax theorem in [21, App. E6], so that

min
M(P )

max
H

fQ(P, g) = max
H

min
M(P )

fQ(P, g). (6)

For this, it suffices to verify the following conditions:

• M(P ),H are compact convex sets in Rn, where n = |X |.
• For any g ∈ H and any µ ∈ R fixed, {P ∈ M(P ) : fQ(P, g) ≤ µ} = {P ∈
M(P ) : P (g) ≤ Q(g) + µ} is closed and convex.

• For any P ∈ M(P ) and any µ ∈ R fixed, {g ∈ H : fQ(P, g) ≥ µ} = {g ∈
H : P (g)−Q(g) ≥ µ} is closed (since P −Q is continuous on H) and convex
(since P,Q are linear).

Thus, the minimax theorem is applicable, and we have the equality in Eq. (6).
Now, given δ > 0,

max
H

min
M(P )

fQ(P, g) ≤ δ ⇔ ∀g ∈ H ∃P ∈ M(P ) such that P (g)−Q(g) ≤ δ

⇔ ∀g ∈ H, Q(g) ≥ P (g)− δ ⇒ ∀A ⊆ X , Q(A) ≥ P (A)− δ ⇔ Q ∈ M(Q).

But since P is 2-monotone the inequality Q(A) ≥ P (A)−δ ∀A ⊆ X implies that
Q(g) = (C)

∫
gdQ ≥ (C)

∫
gdP − δ = P (g)− δ, using that g takes values in [0, 1]

and the expression of the Choquet integral. Thus,

max
H

min
M(P )

fQ(P, g) ≤ δ ⇔ Q ∈ M
(
Q
)
. (7)

On the other hand,

min
M(P )

max
H

fQ(P, g) ≤ δ ⇔ ∃P ∈ M(P ) such that P (g)−Q(g) ≤ δ ∀g ∈ H

⇒ ∃P ∈ M(P ) such that P (A)−Q(A) ≤ δ ∀A ⊆ X
⇔ ∃P ∈ M(P ) such that Q ∈ M

(
Q

P

)
.

But by linearity we also deduce that

P (A)−Q(A) ≤ δ ∀A ⊆ X ⇒ P (g)−Q(g) ≤ δ ∀g ∈ H,

using that any g ∈ H can be expressed as g =
∑k

i=1 xiIAi , for A1 ⊆ A2 ⊆ · · · ⊆
Ak, xi ≥ 0,

∑k
i=1 xi ≤ 1 and 1 ≤ k ≤ n, and that therefore

P (g)−Q(g) =

k∑
i=1

xi(P (Ai)−Q(Ai)) ≤ δ

k∑
i=1

xi ≤ δ.

We conclude then that

min
M(P )

max
H

fQ(P, g) ≤ δ ⇔ Q ∈ ∪P∈M(P )M(Q
P
) ⇔ Q ∈ Bδ

dmin
TV

(P ). (8)

Putting together Eqs. (6), (7) and (8) we deduce the desired equality. ⊓⊔
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5 Conclusions

In this paper we have explored how to distort a coherent lower probability. We
have considered two approaches: either directly distorting the lower probabil-
ity or distorting the elements in the credal set. When the distortion is done by
means of the total variation distance, a summary of the results is shown in Fig-
ure 1. There we can see that the lower probabilities obtained by both approaches
coincide (Prop. 2), but somewhat surprisingly their credal sets only coincide un-
der 2-monotonicity (Prop. 4). This means the lower envelopes of M(Q) and

Bδ
dmin
TV

(P ) in gambles, i.e. their associated lower previsions, only coincide under

2-monotonicity, while in general we only have the inclusion Bδ
dmin
TV

(P ) ⊆ M(Q).

P coherent Bδ
dmin
TV

(P )

M
(
Q
)

⋃
P∈M(P )

M
(
Q

P

)

Q(A)

Q′(A)

Prop. 2

Prop. 4

Fig. 1. Connection between the different approaches for distorting a lower probability
using the TV-distance. The dashed line expresses the partial correspondence, in this
case, under 2-monotonicity.

Even though this paper constitutes our first approximation to the problem,
there are other results we have not reported here due to space limitations, as
well as some problems still pending. First of all, regarding the properties that
a distortion approach may satisfy, we should also consider some other ratio-
nality conditions from [6, 17] such as the invariance under permutations of the
possibility space X and under marginalization.

Secondly, our extension dmin
TV of the total variation distance to credal sets

is not the only possibility; we may instead consider other definitions that are
applicable on lower probabilities that are not coherent or that are based on the
maximum distance between the credal sets instead of the minimum.

Thirdly, the connection between our definition and the notion of strong δ-
core in coalitional game theory leads us naturally towards a distortion model
that connects with the weak δ-core; this would require us to consider a penalised
version of the total variation distance.

Finally, our analysis should be completed by comparing the model we have
introduced with similar extensions of other distortion models, such as the ϵ-
contamination, pari-mutuel or Wasserstein models. This analysis, together with a
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thorough study of the connection with the results by Moral [17] and Destercke [6],
is the main future line of research.
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