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Abstract. When we process data, it is important to take into account
that data comes with uncertainty. There exist techniques for quantifying
uncertainty and propagating this uncertainty through the data process-
ing algorithms. However, most of these techniques do not take into ac-
count that in th real world, measuring instruments are not 100% reliable
– they sometimes malfunction and produce values which are far off from
the measured values of the corresponding quantities. How can we take
into account both uncertainty and reliability? In this paper, we consider
several possible scenarios, and we show, for each scenario, what is the
natural way to plan the measurements and to quantify and propagate
the resulting uncertainty and reliability.

Keywords: Data processing · Measurement uncertainty· Measurement
reliability.

1 Formulation of the Problem

Data processing is ubiquitous. The main objectives of science and engineer-
ing are to know the current state of the world, to predict what will happen, and
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to make sure – by using appropriate devices and/or controls – that the future
world is as beneficial for us as possible.

Knowing the current state of the world means, in particular, to know the
values of the physical quantities that characterize this state. Some of these quan-
tities we can directly measure, in the sense that there is a measuring instrument
that returns the value of this quantity. For example, we can measure the current
temperature by using a thermometer, we can directly measure the wind speed,
the distance between two nearby buildings, etc. Other quantities y we cannot
measure directly in this sense – e.g., we cannot directly measure the temperature
on the surface of the Sun or the distance from the Earth to the Sun. Since we
cannot measure these quantities directly, we have to measure them indirectly:

– we find easier-to-directly-measure auxiliary quantities x1, . . . , xn that are
related to y by a known relation y = f(x1, . . . , xn); this relation can be
known from some physical theory and/or it can be obtained from empirical
data – e.g., by using machine learning;

– we measure the values of these auxiliary quantities xi, and

– we get an estimate for the desired quantity y by applying the algorithm
f(x1, . . . , xn) to the results of measuring the quantities x1, . . . , xn.

And, of course, at the present moment of time, we cannot directly measure the
future value of a physical quantity y. These future values must also be measured
indirectly, by following the same three steps.

In general, this procedure – of applying an algorithm to measurement results
– is known as data processing.

Comment. In many cases, the data processing algorithm consists of several dis-
tinct stages, each processing the measurement results and/or the results of pre-
ceding stages. This is how, for example, deep neural networks handle data; see,
e.g., [7].

Uncertainty and reliability are ubiquitous. As we have mentioned, most
information about the real world comes – directly or indirectly – from measure-
ments. Measurements are never 100% accurate: for each physical quantity x, the
measurement results x̃ is, in general, different from the actual (unknown) value
x of the corresponding quantity.

– In most practical situation, the difference ∆x
def
= x̃ − x is reasonably small.

Following the usual use of this term, we will call this difference the measure-
ment uncertainty.

– Sometimes, a measuring instrument malfunctions – and generates a result
which is far off from the actual value of the corresponding quantity. The
probability of the measuring instrument functioning well is known as its
reliability.

Comment.
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– From the purely mathematical viewpoint, outliers corresponding to malfunc-
tioning can be viewed as part of the overall probability distribution of mea-
surement uncertainty.

– However, in practice, when manufacturers of measuring instruments provide
the probabilities of different values of ∆x (and/or the general statistical
characteristics of the corresponding probability distribution, such as mean
and variances) they usually mean conditional probabilities (and conditional
means and variances) – under the condition that we only consider small
values ∆x (and ignore much larger outliers).

Measurement uncertainty affects the results of data processing. When
we process data, we apply an appropriate algorithm y = f(x1, . . . , xn) to the
results x̃1, . . . , x̃n of measuring the quantities x1, . . . , xn, i.e., we compute the
value ỹ = f(x̃1, . . . , x̃n).

The measurement results x̃i are, in general, different from the actual val-
ues xi. Thus, the value ỹ is, in general, different from the ideal value y =
f(x1, . . . , xn), i.e., the value that we would have got if we knew the exact values
xi. (And, by the way, the relation y = f(x1, . . . , xn) may be only approximate,
so our estimate may be even more different from the true value y.)

It is therefore desirable to understand how the measurement uncertainty
propagates through the data processing algorithm, i.e., what is the resulting

uncertainty ∆y
def
= ỹ − y.

How to take uncertainty into account: what is known. Several methods
have been developed in measurement theory (see, e.g., [24]) to take uncertainty
into account, both when we plan measurements and when we process data.

Remaining problem. The problem is that most of these methods do not take
into account the fact that measurement instruments are also not perfectly re-
liable. Sometimes, they malfunction – and generate results which are far off
from the actual value of the corresponding quantity. It is therefore important
to also take into account this finite reliability when planning measurements and
processing data.

What we do in this paper. In this paper, we describe several practical sce-
narios, depending on what information we have. For each scenario, we show
how to take into account both uncertainty and reliability, both when planning
experiments and when processing data.

2 Possible Scenarios

First scenario: journey to the unknown. As mentioned before, the scenarios
depend on what we know about the situation. Let us start with the case when
we have no prior information at all. This is typical when we design a new state-
of-the-art measuring instrument, be it a new more powerful space telescope, a
new more powerful particle accelerator, etc. In many such situations, we do not
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fully know what to expect, we do not fully know what exactly objects we will
measure, we do not know what uncertainty level (and what reliability level) we
will need – but we still design the corresponding instrument, because in the past,
similar instruments led to important discoveries.

In this case, if within a given cost limit, we have several designs, a natural
idea is to select the design that will provide us with the largest amount of
information.

Second scenario: working by specifications. The second scenario is the
opposite to the first one: we know exactly what uncertainty level (and what
reliability level) we need, we just need to find the least costly way to achieve
these specifications.

General case. In practice, we rarely know nothing about the appropriate values
of accuracy and reliability, and we rarely have full information about them. Such
situations are well-studied in decision theory (see, e.g., [5, 6, 12, 14, 18, 19, 25]).
In decision theory, it is known that decisions of a rational decision maker – who,
e.g., prefers A to C if he/she prefers A to B and B to C – can be described
by maximizing the expected value of a special function called utility. This is the
framework that we consider in this paper.

This framework can be divided into two scenarios, that we will call third and
fourth:

– In the third scenario, we consider a general optimization problem without
any constraints – the fact that some values are undesirable is described not
by a constraint, but by a highly negative utility assigned to these situations.

– In the fourth – rather typical scenario – we consider a limited problem, in
which we only take into account a few quantities – and the analysis of all
other aspects is described in terms of constraints. For example, when we
design a chemical plant, we need to satisfy a constraint that the concentra-
tion of undesired chemicals in the air should not exceed some threshold – a
threshold that has already been determined by taking into account potential
benefits and limitations of these types of plants.

Comment. We have mentioned that in this paper, we use utility-based decision
making framework. Of course, decision theory described decisions by ideal deci-
sion makers; it is well known that our actual decisions differ from this idealized
framework; see, e.g., [10]. It is therefore desirable to extend our results to realistic
non-utility-based decision techniques.

3 Analysis of the Problem

How do we describe uncertainty. In the ideal case, we should know which
values of measurement uncertainty ∆x are possible and with what frequency
different possible values appear – i.e., what is the probability distribution of the
measurement uncertainty; see, e.g., [24].
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In practice, often, we only have the upper bound∆ on the absolute value |∆x|
of the measurement uncertainty: |∆x| ≤ ∆. In the following text, we will call
this value the accuracy of the measuring instrument. Knowing this upper bound
is a must: if we do not know any upper bound, this means that, no matter what
value we measure, the actual value can be as far off from it as mathematically
possible – this is not what we would call a measuring instrument.

The mean value of the measurement error can be determined after several
comparison with the “standard” (= much more accurate) measuring instrument
– as the arithmetic average of the measurement uncertanties. Once we know this
mean, we can subtract this value – known as bias – from all measurement results,
and thus, conclude that the mean becomes 0.

We can also estimate the second moment – which, since the mean is 0, is
equal to the variance V , or, which is equivalent, estimate the standard deviation

σ
def
=

√
V .

Usually, the measurement uncertainty comes as a joint effect of many rela-
tively small reasonably independent factors. In this case, according to the Cen-
tral Limit Theorem (see, e.g., [26]), the resulting distribution is close to Gaussian
(normal). Of course, in reality, there may be dependence between factors, and
some of these factors may not be that small – but empirical data shows that
indeed, for the majority of measuring instruments, the probability distribution
of measurement uncertainty is close to normal; see, e.g., [22, 23].

For a normal distribution, with very high confidence, all the values of the
measurement uncertainty are located within an interval [−k ·σ, k ·σ]: for k = 2 we
have confidence 95%, for k = 3, confidence 99.9%, for k = 6, we have confidence
1 − 10−8. It is then natural to identify ∆ as the upper bound of this interval:
∆ = k · σ.

The actual distribution may be different from normal, but for many other
distributions, we still have a similar relation ∆ = k · σ for some constant k. So
this is what we will assume in this paper.

How to estimate the amount of information. In the discrete case, when
we have finitely many possible outcomes, a natural measure of the amount of
information is the average number of “yes”-“no” questions that we need to ask
to uniquely determine the outcome. It is known (see, e.g., [3, 19]) that if we know
the probabilities p1, . . . , pN of different outcomes, then the average number of
questions is equal to Shannon’s entropy

S
def
= −

N∑
i=1

pi · log2(pi).

In situations when we do not know the exact values of the probabilities
pi, i.e., when several different probability distributions are possible, a natural
idea is to take the largest amount of information corresponding to all possible
distributions. It is known that if we have no information about the probabilities
at all, the largest entropy corresponds to the uniform distribution p1 = . . . = pN ;
see, e.g., [9].
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In the continuous case, we cannot determine the actual value by asking a
finite number of “yes”-“no” questions, since:

– this way we only get finitely many possible combinations of answers, while
– there are infinitely many real numbers within the interval [x, x] of possible

values of the measured quantity x.

What we can do is determine x with some accuracy δ. This means we should
have several values x′, x′′, . . . , so that each from the range [x, x] should be close
to one of these values, i.e., should be in one of the intervals [x′ − δ, x′ + δ],
[x′′ − δ, x′′ + δ] of width 2δ. In other words, we divide the range [x, x] into
subintervals of width 2δ and take into account probabilities p1, . . . , pN , of x
being in different subintervals.

Comment. Note that we are only estimating the amount of information corre-
sponding to the case when we do not know the probability distribution. The
fact that this amount of information corresponds to the uniform distribution
does not mean that the actual distribution is uniform – in this no-information
case, we can have many different probability distributions on this interval.

What if we have several measurements of the same quantity: what
is the resulting uncertainty. Suppose that we have m results x̃1, . . . , x̃m of
measuring the same quantity x by different measuring instruments. All these
measurements have the mean measurement uncertainty 0, and, for each mea-
suring instrument, we know the corresponding standard deviations σi. It is
then desirable to combine these results into a single more accurate estimate
x̃ = f(x̃1, . . . , x̃m). We want to find a combination which is the most accurate,
i.e., for which the standard deviation of the corresponding uncertainty

∆x = f(x̃1, . . . , x̃m)− f(x1, . . . , xm) = f(x̃1, . . . , x̃m)−

f(x̃1 −∆x1, . . . , x̃m −∆xm)

is the smallest possible.
We can expand the above expression in Taylor series in terms of ∆xi and

take into account that measurement uncertainty is usually reasonably small –
so terms which are quadratic or of higher order in terms of this uncertainty
can be, in the first approximation, safely ignored: e.g., for a not very accurate
measurement with 10% accuracy, the square of this value is 1% ≪ 10%. This
linearization is a usual techniques in physics; see, e.g., [4, 27]. Thus, we get
∆y = c1 ·∆x1+ . . .+cm ·∆xm for some coefficient ci. If all the instruments show
the same result, this is the result we should return. This means, in particular,
that

∑
ci = 1.

Uncertainty of different measurements usually comes from different indepen-
dent causes. For the sum of independent random variables, the variance is equal
to the sum of the variances. So, for the variance σ2 of ∆x, we have

σ2 = c21 · σ2
1 + . . .+ c2m · σ2

m.
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We want to generate the most accurate estimate, i.e., we want to minimize
σ2 under the above constraint

∑
ci = 1. To solve this constraint optimiza-

tion problem, we can use the Lagrange multiplier method. As a result, we
get

∑
c2i · σ2

i + λ · (
∑

ci − 1) → min; thus, by differentiating, 2ci · σ2
i + λ =

0, so ci = const · σ−2
i . By using the equation

∑
ci = 1, we conclude that

ci = σ−2
i /(

∑
σ−2
j ). Substituting these values into the formula for σ2, we get

σ2 = (
∑

σ−2
i )/(

∑
σ−2
i )2, i.e., σ2 = 1/(

∑
σ−2
i ) and

σ−2 =

m∑
i=1

σ−2
i .

Since we assumed that the bounds ∆i are proportional to the standard de-
viations σi, for the overall bound ∆, we get a similar formula

∆−2 =

m∑
i=1

∆−2
i .

What if we have several measurements of the same quantity: what
is the resulting reliability. Suppose that we have m measurements of the
same quantity, and in each measurement i, the probability that we have an
outlier is pi. In this case, the only case when we miss the actual value is when
all m measurement are outliers. Since, as we have mentioned, it is reasonable
to assume that the measurements are independent, the probability that all m
measurements are outliers is equal to the product of the given probabilities, i.e.,
to p = p1 · . . . · pm.

4 First Scenario: Journey to the Unknown

Possible questions. Now we are ready to start analyzing specific scenarios.
Let us start with the first scenario, when we do not have any information about
probabilities and we are, thus, interested in getting as much information as
possible. In this scenario, we may need to answer the following natural questions:

– Sometimes, we can only employ one measuring instrument. In this case, it
is desirable to select the most informative instrument.

– In other cases, we can, in principle, employ several measuring instruments,
the only limitation is the overall measurement cost. In this case, it is desirable
to find the arrangement that – within the given cost – will bring us the
maximum amount of information.

– In yet other cases, our goal is to extract a certain amount of information,
and we want to find the arrangement with the minimal cost that will provide
the required amount of information.

In this section, we will formulate all these problems in precise terms – so that
one can use usual numerical techniques to solve the corresponding problems. To
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be able to formulate these problems, let us describe what is known. For each
type of measuring instrument, let us denote its accuracy by ∆i, its probability
of an outlier by pi, and the cost of each measurement by ci. To formalize the
second and third questions, let us also denote the number of instruments of type
i that we will use by ni.

Preliminary analysis. If we have a measuring instrument with accuracy ∆
and outlier probability p, what is the number of bits that we are still missing
after a single measurement by this instrument?

To answer this question, in line with the above analysis, let us pick some
value δ. Then, with probability p, the actual value is somewhere in the original

range [x, x] of with w
def
= x − x, and with probability 1 − p, it is in the interval

[x̃−∆, x̃+∆] of width 2δ. As we mentioned earlier, to find the largest amount of
information, we need to use uniform distribution. So, in the range [x̃−∆, x̃+∆]
of width 2∆, we have (2∆)/(2δ) = ∆/δ intervals with probability (1−p)/(∆/δ).
Here, p ≪ 1, so in the first approximation, 1 − p ≈ 1, and these intervals have
probability 1/(w/(∆/δ).

The remaining part of the range [x, x] is of width x−x−2∆. Here, ∆ ≪ x−x,
so in the first approximation, we can safely assume that this part has width w =
x−x. In this part, we gave w/(2δ) intervals of probability p/(w/(2δ)) = (2δ·p)/w.

The resulting entropy has the form

S = −∆

δ
· 1

∆/δ
· log2

(
1

∆/δ

)
− w

2δ
· 2p · δ

w
· log2

(
2p · δ
w

)
.

This expression can be simplified into

S = − log2(δ) + log2(∆)− p log2(p)− p · log2(δ)− p+ p · log2(w).

Here, p ≪ 1, thus, | log2(p)| ≫ 1, and hence, the term p can be safely ignored in
comparison with p · log2(p). Thus, the number of missing bits is equal to

log2(∆)− p · log2(p) + p · log2(w)− p · log2(δ) + . . . ,

where the three dots indicate terms that do not depend on the selection of the
measuring instrument. Now, we are ready to start answering the questions.

How to select the most informative measuring instrument. In line with
the above computations, we need to select the measuring instrument with the
smallest value of the above-mentioned quantity

v
def
= log2(∆)− p · log2(p) + p · log2(w)− p · log2(δ), (1)

i.e., equivalently, with the smallest value of ev:

ev = ∆ ·
(p · w

δ

)p

.

How to select the most informative combination of measurements
within a given cost. If we use ni measuring instruments of type i, then, as
stated previously:
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– the resulting outlier probability p is equal to

p = pn1
1 · . . . · pnk

k , (2)

– the resulting uncertainty ∆ is equal to

∆ =
(
n1 ·∆−2

1 + . . .+ nk ·∆−2
k

)−1/2
, (3)

– and the resulting cost c is equal to

c = n1 · c1 + . . .+ nk · ck. (4)

Thus, if we limit cost to some value c0, the problem is: among all the tuples
(n1, . . . , nk) that satisfy the inequality c ≤ c0, we need to find the tuples with
the smallest value of the quantity (1), where c, p, and ∆ are determined by the
formulas (2)–(4).

How to find the least expensive way to get the desired amount of
information. In this case, we minimize the cost (4) under the constraint that
the amount of information (1) is larger than or equal to the desired value v0:
v ≥ v0.

5 Second Scenario: Working By Specifications

Formulation of the practical problem. Suppose that the requirements come
in the form of the thresholds ∆0 on accuracy and p0 on the outlier probability,
i.e., we should have ∆ ≤ ∆0 and p ≤ p0. Among all tuples (n1, . . . , nk) that
satisfy both constraints, we need to find the least expensive one.

Analysis of the problem and its resulting formal description. The in-
equality ∆ ≤ ∆0 is equivalent to ∆−2 ≥ ∆−2

0 . Substituting the expression (3)
for ∆ into this inequality, we get

n1 ·∆−2
1 + . . .+ nk ·∆−2

k ≥ ∆−2
0 . (5)

Similarly, the inequality p ≤ p0 is equivalent to ln(p) ≤ ln(p0). Substituting the
expression (2) for p into this inequality, we get

n1 · ln(p1) + . . .+ nk · ln(pk) ≤ ln(p0). (6)

In these terms, the problem is to find, among all the tuples (n1, . . . , nk) that
satisfy the inequalities (5) and (6), the tuple with the smallest value of the
overall cost (4).

How can we solve this optimization problem. The above problem – of
optimizing a linear expression under linear constraints – is an integer-valued
version of the linear programming problem (see, e.g., [28]). There are algorithms
for solving such problems.
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One of the simplest of such algorithms is to solve the corresponding contin-
uous optimization problem – when we allow arbitrary non-negative values ni,
not just integer ones – and then round up each value ni to the nearest integer.
With two constraints, the solution to a continuous linear programming problem
will have only two non-zero values ni, so in this case, we use only two types of
measuring instruments.

6 Third Scenario: Optimization Problem Without Any
Constraints

Formulation of the practical problem. In this scenario, we know the ideal
(optimal) value of the parameter x0 that we want to reach – e.g., we want an
airplane to follow the speed at which its fuel consumption per unit of distance
is the smallest. To maintain this value x0, we need to perform measurements.

The problem is that even if we make sure that the measuring instrument
returns the desired value x0, it does not mean that the actual value of the
corresponding quantity x is equal to x0: due to measurement uncertainty, the
actual value can take any value from the interval [x0 − ∆,x0 + ∆]. Also, with
some small probability p, the measurement result is an outlier that has nothing
to do with reality. In this case, x can be anywhere within the general range [x, x]
of the quantity x.

When x deviates from the optimal value x0, we have a loss. The more accu-
rately and the more reliably we measure, the smaller this loss – but at the same
time, the larger the measurement expenses. What is the measurement strategy
that minimizes the overall costs – including both the additional costs of filtering
and the measurement expenses.

Let us formulate this problem in precise terms. Let D be the expected
cost of the situation when the measured value x0 is an outlier – and thus, the
actual value x can be anything. For an airplane, this may lead to a disaster, so
we denoted this cost by D.

The value x0 minimizes expenses, i.e., minimizes the expression E(x) that
describes how expenses depend on x. In a small vicinity of x0, we can expand
the expression E(x) = E(x0 +∆x) in Taylor series and keep only the first few
terms in this expansion. Since the function E(x) attains its minimum at x0, its
linear term is equal to 0 and thus, the first non-constant term in the Taylor
expansion is quadratic: E(x0 +∆) = E(x0) +K · (∆x)2, for some constant K.
So, the additional expenses caused by the measurement uncertainty are equal to
K · (∆x)2.

As we have mentioned, according to the decision theory, we need to select
the decision in which the expected value of the utility is the largest – i.e., equiv-
alently, in which the expected loss is the smallest. To find the expected loss, we
need to know the probabilities of different uncertainty values from the interval
[−∆,∆]. As we have mentioned, in practice, we often do not have any information
about these probabilities – but, according to the utility-based decision-making
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paradigm, we need to select one of the possible probability distributions. Since
we do not have any reason to believe that some probabilities are larger than
others, it makes sense to select the distribution for which all the probabilities
are the same, i.e., the uniform distribution on this interval; see, e.g., [9]. One
can show that for the uniform distribution on the interval [−∆,∆], the average
value of the expression K · (∆x)2 is equal to (K/3) ·∆2.

Thus, the overall loss caused by the measurement imperfection is equal to
p ·D+(K/3) ·∆2. The overall cost can be computed as the sum of this loss and
the measurement cost (4).

Thus, we arrive at the following formulation of the problem: find the tuple
(n1, . . . , nk) that minimizes the expression p · D + (K/3) ·∆2 + c, where p, ∆,
and c are determined by the formulas (2)–(4).

7 Fourth Scenario: Optimization Under Constraints

Formulation of the practical problem. In this scenario, we assume that
there is a threshold x0 that we cannot overcome – otherwise, we get a huge
penalty. An example that we mentioned above is a chemical plant, for which the
concentration x of some chemical in the surrounding air cannot exceed a given
threshold x0.

Decreasing the concentration x to the desired level invokes costs, and the
smaller this level, the larger this cost. If we could measure x with absolute
accuracy, then the best solution would be to apply the minimal necessary filtering
– i.e., to keep the value x exactly at the largest allowed value x0. In practice,
there is measurement uncertainty. If we measure with some accuracy ∆, this
means that the actual value x may differ from the measurement result by ∆.
So, to make sure that we never exceed the value x0, we need to make sure that
the measured value never exceeds x0 − ∆. In other words, we need additional
filtering.

The smaller ∆, the less costly the filtering – but the more expensive the
measurements. So, we want to minimize the overall expenses on filtering and
on measurement. We also need to take into account the possibility that the
measurement result is an outlier.

Let us formulate this problem in precise terms. In this case, similar
to the third scenario, we can also expand the expression E(x) = E(x0 − ∆)
(that describes how the expenses depend on x), and keep only the first non-
constant terms in this expansion. In this case, the function E(x) does not attain
its minimum for x = x0, so we have non-constant linear terms: E(x0 − ∆) =
E(x0) +K ·∆ for some constant K.

Thus, the overall loss caused by the measurement imperfection is equal to
p ·D +K ·∆. The overall cost can be computed as the sum of this loss and the
measurement cost (4).

Thus, we arrive at the following formulation of the problem: find the tuple
(n1, . . . , nk) that minimizes the expression p ·D +K ·∆+ c, where p, ∆, and c
are determined by the formulas (2)–(4).
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8 How This Affects Data Processing

Formulation of the practical problem. In data processing, we apply the
algorithm f(x1, . . . , xn) to the results x̃i of measuring the quantities x1, . . . , xn.

Since the measurement results are, in general, somewhat different from the
corresponding actual values xi, the result ỹ = f(x̃1, . . . , x̃n) of data processing is,
in general, different from the ideal value y = f(x1, . . . , xn) that we would have
gotten if we knew the exact values xi. What can we say about the difference

∆y
def
= ỹ − y?
We know the standard deviation σi of each measurement uncertainty ∆xi =

x̃i − xi, and we know the probability pi that the i-th measurement result is an
outlier. Based on this information, we want to know the standard deviation σ of
the value ∆y, and the probability p that the value ỹ is an outlier.

How to solve this problem. To find σ, we can – as above – expand the
expression

∆y = f(x̃1, . . . , x̃n)−f(x1, . . . , xn) = f(x̃1, . . . , x̃n)−f(x̃1−∆x1, . . . , x̃n−∆xn)

in Taylor series in terms of ∆xi and keep only linear terms in this expansion.
Then, we get ∆y = s1 ·∆x1 + . . .+ sn ·∆xn, where we denoted

si
def
=

∂f

∂xi
,

and thus [24],
σ2 = s21 · σ2

1 + . . .+ s2n · σ2
n.

To estimate p, the main idea is that if one of the values x̃i is very different
from xi, then the result ỹ = f(x̃1, . . . , x̃n) of data processing is also very different
from the desired value y. Thus, the only case when the value ỹ is not an outlier
is when none of the inputs are outliers. For each i, the probability that the i-th
measurement result is not an outlier is equal to 1− pi. Since the measurements
are independent, the probability that all measurement results are not outliers
is equal to the product (1 − p1) · . . . · (1 − pn) of these probabilities. So, the
probability p that ỹ is an outlier is equal to 1 minus this probability, i.e., to

p = 1− (1− p1) · . . . · (1− pn).

Usually, the values pi are small, so we can expand this expression in Taylor
series in terms of pi and keep only the first terms in this expansion. This leads
to a simplified formula

p = p1 + . . .+ pn.

9 Conclusions

Most of the data that we process comes from measurements, and measurements
are never 100% accurate: there is always measurement uncertainty, i.e., the
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non-zero difference between the measurement result and the actual value of
the measured quantity. This uncertainty affects the result of data processing.
Measurement theory has developed many effective methods for quantifying and
propagating measurement uncertainty. These methods allow us to gauge how
the result of processing the measurement results differs from what we would
have computed in the idealized case, when we could apply the data processing
algorithm to the actual values of the corresponding quantities.

However, many of these methods do not take into account the issue of re-
liability: that sometimes, the measuring instruments malfunction and produce
the results which are far off from the actual values of the measured quantities.
In such situation, the results of data processing may also be far off from the
desired values. In this paper, on several realistic scenarios, we show how both
uncertainty and reliability can be taken into account in data processing.

In this paper, we mostly concentrate on situations in which we know the
probabilities of all situations. In practice, we often only have partial knowledge
of these probabilities; this information may come from measurements and obser-
vations – or from expert estimates. It is therefore desirable to extend our ideas
to such imprecise probability case (see, e.g., [1]), starting with the two simplest
situations of this type:

– interval uncertainty (see, e.g., [8, 13, 15, 17, 24]), when we only know bounds
on the corresponding values and we do not have any information about the
probability of different values within these bounds, and

– fuzzy uncertainty (see, e.g., [2, 11, 16, 20, 21, 29]), when we only have expert
estimates described in natural-language terms.
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