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Abstract. The paper addresses the use of an adaptive, recursive fuzzy
modeling based on the notion of level set to forecast monthly stream-
flows of a major hydroelectric power plant reservoir at the northeast of
Brazil. Streamflows are highly complex nonstationary time series with
high variability during the year, a feature that turns modeling and fore-
casting very hard and challenging. The adaptive level set method is eval-
uated against periodic autoregressive moving average models, currently
adopted by many power industries, and against granular, neural, neu-
ral fuzzy, recurrent neural, and data driven level set models. The results
show that adaptive level set modeling achieves the best root mean square
error performance, surpassing all the models considered herein.

Keywords: Adaptive fuzzy systems · Data driven level set modeling ·
Time series forecasting.

1 Introduction

Planning and operation of hydro power and water resource systems involve many
complex production relationships of several hydrological and operational assets.
The natural streamflow is the key asset in hydro power and water resources
planning. Streamflow data covering the entire planning period are required to
effectively plan production and operate hydroelectric power plants. Streamflow
forecast is of utmost importance in hydro energy system analysis, simulation,
optimization, decision-making, and control as well.

Because hydroelectric systems are geographically spread out, hydrometric
data are collected using sparse, distributed data acquisition systems, which of-
ten result in imprecise data and geophysical information. The highly nonlinear
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relationship between the input and output flow significantly complicates stream-
flow modeling and forecasting. Another difficulty is the nonstationary nature of
streamflows [1]. Often, wet periods show high stream variability, while in dry
periods the variability is usually low. This scenario makes streamflow modeling
and forecasting very difficult.

Several streamflow modeling and forecasting approaches have been reported
in the literature. Many of them use hydrological models considering the me-
teorological forcing inputs, particularly the precipitation, measured in situ, or
estimated from satellite and radar observation. Although physical hydrological
models can be adopted, their use is difficult in practice because of the need for
observation data, their complex structure, and the computational effort needed
to calibrate [2]. Alternatively, machine learning methods can encode relation-
ships in data and are an interesting alternative to forecast streamflows without
detailed knowledge of the underlying physical phenomena [3]. A combination of
machine learning with hydrometeorological approaches has been addressed for
hourly streamflow forecasting [4], for instance. Granular computation is another
alternative that has successfully addressed streamflow modeling and forecasting
and has shown to be competitive with neural and neural fuzzy methods [5].

This paper addresses the use of an adaptive, recursive, data driven fuzzy
modeling technique using the concept of level set recently introduced in [6] to
forecast monthly streamflows of a major hydroelectric power plant reservoir in
the northeast of Brazil. The level set method is compared with periodic autore-
gressive moving average, the model currently adopted by the power industry,
with models developed by a granular pattern recognition method, a multilayer
feedforward neural network, a multilayer fuzzy neural network, and a long short-
term memory recurrent neural network. The results suggest that the data driven
level set model outperforms the remaining ones.

The paper is organized as follows. The next section briefly reviews the level
set [8], the data driven level set [7], and the recursive level set method [6].
Section 3 addresses the monthly streamflow modeling and forecast problem and
evaluates the adaptive, recursive data driven level set method against classic and
machine learning-based forecasters. Section 4 concludes the paper summarizing
its contributions and suggesting issues for future work.

2 Level Set fuzzy Modeling

2.1 Fuzzy Level Set Models

Consider a fuzzy rule-based model with N fuzzy rules of the form:

Ri : if x is Ai then y is Bi (1)

where i = 1, 2, . . . , N and Ai and Bi are known convex fuzzy sets with mem-
bership functions are Ai(x) : X → [0, 1] and Bi(y) : Y → [0, 1]. Given an input
data x ∈ X , the output of the fuzzy model produced by the level set method is
as follows [8].
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1. Compute the activation level of each rule Ri

τi = Ai(x) (2)

2. Find the level set Bτi for each τi > 0

Bτi = {y|τi ≤ Bi(y)} = [yil, yiu] (3)

3. Compute the midpoints of the level sets

mi(τi) =
yil + yiu

2
(4)

4. Compute the output of the model ŷ using

ŷ =

∑N
i=1 τimi(τi)∑N

i=1 τi
(5)

If the fuzzy set Bi is discrete, then mi is the average of the elements of Bτi .
Expression (5) is an instance of a mapping F : [0, 1] → Y:

ŷ =

∑N
i=1 τiFi(τi)∑N

i=1 τi
= F(τ) (6)

in which Fi(τ) = mi(τi) is one of the simplest. Other choices are possible and
shall be addressed in a future paper.

It should be pointed out that F is a mapping from membership degrees to
the elements of the output domain Y, which significantly differs from the usual
functional and linguistic fuzzy model rules processing mechanisms [11].

2.2 Data Driven Fuzzy Level Models

Suppose that the fuzzy sets Ai(x) : X → [0, 1] and Bi(y) : Y → [0, 1] are not
known in advance. Let D = {(xk, yk)}, xk ∈ Rp, yk ∈ R be a data set such
that yk = f(xk), k = 1, 2, . . . ,K. The task is to develop a fuzzy model F to
approximate the function f using D [7].

Development of fuzzy linguistic rule-based models from data requires the
specification of the number of rules N , and the membership functions of the
antecedent and the consequent of each rule [11]. The number of rules can be
identified using domain knowledge, clustering, or any structural identification
method. When clustering is used, it is common to assign a cluster to a rule on a
one-to-one basis, one cluster - one rule. Typically, the fuzzy c-means algorithm,
or its variations, is chosen to cluster the data space. Determination of the number
of clusters may need cluster validity measures or self-organizing methods [9].

In the data driven fuzzy modeling framework, once the antecedents mem-
bership functions Ai are determined, an estimate of the output functions Fi,
i = 1, 2, . . . , N , can be derived directly from the data instead of identifying Bi.
An easy and effective way to do this is to assume Fi affine, namely
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Fi(τi) = viτi + wi (7)

The values of the coefficients vi and wi can be estimated using e.g. a least
squares-based estimation procedure. Originally, [7] developed a pseudo-inverse-
based solution whose steps are the following.

1. For each data par (xk, yk) ∈ D
2. Compute activation levels

τki = Ai(x
k), i = 1, . . . , N

3. Let

zk =
τk1 (v1τ

k
1 + w1)

sk
+ . . .+

τkN (vNτkN + wN )

sk
, sk =

N∑
i=1

τki

dk = [(τk1 )
2/sk, τk1 /s

k, . . . , (τkN )2/sk, τkN/sk]

u = [v1, w1, . . . , vN , wN ]T

4. Assemble the matrices

z = [z1, . . . , zK ]T , D = [(d1)T , . . . , (dK)T ]T , y = [y1, . . . , yK ]T

5. Compute the vector of coefficients u

u = D+z (8)

6. Compute the model output ŷ
ŷ = du (9)

which corresponds to the output equation (5). D+ is the Moore-Penrose pseudo
inverse of D [10]. The vector u is the solution of minu∥y − z∥2.

The processing steps of the data driven level set method, using clustering to
granulate the input-output space, proceed as follows:

1. Cluster the data set D into N clusters.
2. Assign membership function Ai to each cluster i.
3. Find the vector of coefficients u using (8).
4. Compute the model output ŷ using (9).

2.3 Adaptive Fuzzy Level Models

The adaptive fuzzy level set modeling proceeds similarly to the data driven level
set modeling. Both use clustering to granulate the input-output space to deter-
mine the antecedent membership functions Ai. They differ in how the vector of
coefficients of the output functions are estimated. The adaptive variant of the
data driven level set processes the data pairs (xk, yk) sequentially. In this case,
the least squares estimates of the vector of coefficients are computed for each
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value of k = 1, . . . ,K. Therefore, it is desirable to systematize the parameter
estimation computations recursively. Like in the previous section, the output
functions are affine, but the estimates of coefficients vi and wi are found recur-
sively. Recursive parameter estimation is well addressed in the literature, e.g.
[16], [15]. In the context of recursive level set fuzzy modeling, the detailed steps
are the following [6].

For each data par (xk, yk), k = 1, . . .

1. Compute activation levels τki = Ai(x
k), i = 1, . . . , N

2. Let

dk = [(τk1 )
2/sk, τk1 /s

k, . . . , (τkN )2/sk, τkN/sk]

sk =

N∑
i=1

τki

3. Compute gain matrix

Pk =
1

λ

(
Pk−1 − Pk−1(dk)TdkPk−1

λ+ dkPk−1(dk)T

)
4. Update output functions parameters

uk = uk−1 +Pk(dk)T (yk − dkuk−1) (10)

5. Compute the model output ŷk

ŷk = dkuk (11)

The adaptive, recursive level set fuzzy modeling needs initial estimates u0

of the parameters and the initial gain matrix P0. Usually this is done setting
u0 = 0 and P0 = αI, where α is a large enough number [17]. As it is well known,
λ is a forgetting factor used to weight the relevance of a sample in the data
sequence. When λ is small, recent data are heavily weighted, and the estimation
algorithm tracks time-varying systems parameters more efficiently [16].

The adaptive data driven level set method can be summarized as follows:

1. Cluster the data set D into N clusters.
2. Assign membership function Ai to cluster i.
3. For each step k do:

(a) Find the vector of coefficients u using (10).
(b) Compute the model output ŷ using (11).
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3 Streamflow Modeling and Forecast

This section uses the adaptive, recursive, data driven level set to model and
forecast the average monthly inflows for a major hydroelectric plant called So-
bradinho, located in Northeast Brazil. The hydrologic data covering the period
from 1931 to 1990 (720 samples) are used to develop the models, and the data
from 1991 to 1998 (96 samples) are used to test and to compare the performance
of the different models. This is the same scenario considered in [5], and that will
be used in this section to evaluate the forecasters.

The inflows oscillate between minimum and maximum values following the
seasonal variation during the 12 months period. The seasonality of the flows jus-
tifies the use of 12 different models, one for each month of the year, as currently
adopted by many hydrological systems worldwide. In this vein, twelve forecasting
models were developed in [5] to forecast each of the 12 monthly inflow averages
from January to December, from 1991 to 1998.

The forecasting methods adopted to evaluate and compare with the adaptive,
recursive data driven level set method (RLSM) are the periodic autoregressive
moving average (PARMA) [12], the granular functional model (GFM), the gran-
ular relational model with median recognition procedure (GRM-MRP), and the
granular relational model with pattern recognition procedure (GRM-PRP) [5],
as well as a multilayer neural network (MLP), and a fuzzy neural network (FNN)
[13]. All these methods use the same forecasting modeling scheme considered in
[5], namely, an individual model is developed to forecast each of the 12 monthly
inflow averages. The RLSM, on the contrary, process data sequentially and de-
velops only one forecasting model with two inputs of the form

ŷk = f(yk−1, yk−2) (12)

encoded by fuzzy rules with a Gaussian membership function for each input
variable in their antecedents. The rules were designed using the fuzzy c-means
clustering algorithm.

The testing period is from January 1991 to December 1998. RLSM is also
compared with the data driven level set method (DLSM) [6], a batch mode
modeling method that uses the generalized inverse form of the least squares
learning, and with a long short-term memory (LSTM) recurrent neural network
with one dense layer and two recurrent layers. RLSM and LSTM process the 720
training samples sequentially to capture the temporal relationships in the data.
Likewise, they process the 96 testing data samples sequentially.

Evaluation uses the root mean square error RMSE (m3/s) computed from
the forecasts produced by the models using test data. The result is summarized
in Table 1 whose values, except for RLSM and DLSM, were taken from [5] and
[18]. The RLSM achieves a RMSE = 997.87 in 0.15 seconds when processing
training and testing data sequentially. If the consequent parameters of the fuzzy
rules are kept frozen after training, then it reaches RMSE = 1029,44. In this
case RLSM ran in 0.094 seconds.
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Table 1. Performance evaluation of streamflow forecasting

Forecasting Rules or Number of Testing Data
Method Neurons Parameters Samples RMSE

PARMA - 21 96 1079.30
GFM - 61 96 1471.20
MLP 211 84 96 1462.80
FNN 461 184 96 1330.40

GRM-MRP - 81 96 1191.60
GRM-PRP - 121 96 1005.00

LSTM 1+22 43 96 1162.90
DLSM 4 24 96 1029.28
RLSM 4 24 96 997.87

1Average/month 21 Dense and 2 LSTM layers

Fig. 1 shows the forecast produced by the adaptive level set model, and Fig.
2 and Fig. 3 show the forecast of the data driven level set and the long short-
term memory, respectively. Interestingly, notice that the RLSM is particularly
superior in predicting higher levels of inflows, a very difficult and challenging
task for streamflow forecasters.

Fig. 1. RLSM forecast for the testing period.



8 L. Maciel et al.

Fig. 2. DLSM forecast for the testing period.

Fig. 3. LSTM forecast for the testing period.
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4 Conclusion

This paper addressed adaptive data driven fuzzy modeling based on the of level
set concept to forecast average monthly streamflows of a major hydroelectric
power plant reservoir at the northeast of Brazil. The adaptive level set model was
compared with the current power industry standard, the periodic autoregressive
moving average, with granular pattern recognition-based model, a multilayer
feedforward neural network, a fuzzy neural network, a long short term memories,
and the data driven level set model. The results suggest that the adaptive data
driven level set model performs best among the remaining models. Future work
will consider extensions of the level set fuzzy modeling of granular time series,
and applications in system identification and control.
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