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Abstract. We investigate how various well known probability inequal-
ities extend to lower and upper previsions. Our focus is especially on
Markov’s, Bhatia-Davis, Jensen’s and Cantelli’s inequalities. In all such
cases, imprecise versions of these inequalities are available even requiring
the weak consistency notion of 2-coherence, which implies that they ob-
tain for a large number of uncertainty models. However, stronger results
may be achieved with coherent lower and upper previsions. In particu-
lar, it is possible to bound lower and upper variances. Various bounds
for lower and upper covariances are also presented; while being generally
not tight, they require very limited amounts of information to obtain.
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1 Introduction

While a great number of inequalities are well known in classical probability
theory, the issue of investigating how they are modified in imprecise probability
theory received considerably less attention. Some results are available within
studies on laws of large numbers [4, 5] or other specific problems [16].

In [11,12] we started a systematic study in this direction of some known
inequalities, which we report and integrate in the present paper. The consid-
ered inequalities regard evaluations of gambles, and provide therefore bounds on
lower or upper previsions for these gambles or transformations of theirs. Typical
distinguishing features of imprecise probability inequalities, as will constantly
appear in the sequel, are:

(a) More imprecise probability inequalities may be counterparts to the same
probability inequality.

(b) Several imprecise probability inequalities apply requiring only relatively weak
degrees of consistency.

We believe that (b) is particularly interesting, as it lets us shed light on the truly
minimal properties that underlie an uncertainty inequality. This fact cannot
be adequately investigated as long as precise probabilities only are considered,
unlike imprecise probabilities that offer more notions of consistency. Thus, we
have inequalities for coherent lower /upper previsions, but often also versions with
imprecise previsions that are 2-coherent, which is a much weaker requirement.
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The paper is organised as follows: Section 2 contains basic information on
the consistency notions for lower/upper previsions useful in the sequel. Section 3
presents Markov’s inequalities, requiring 2-coherence. Section 4 discusses a num-
ber of extensions of Bhatia-Davis inequality, originally upper bounding the vari-
ance 0% = E[(X — E(X))?] of a gamble X with (sup X — E(X))(E(X) —inf X).
Bounds are given when the expectations in 0% are replaced with upper (P) or
lower (P) 2-coherent previsions. Further results requiring that P, P are coher-
ent are: bounds on the upper and lower variance of X (defined in [18]), and a
bivariate generalisation of Bhatia-Davis inequality. The latter bounds upper and
lower covariances. Although in general all these bounds require a limited uncer-
tainty knowledge, when even less information is available some weaker bounds
obtain, intermediate between Bhatia-Davis and Popoviciu’s inequalities. Sec-
tion 5 presents basic results on imprecise versions of Jensen’s and Cantelli’s
inequalities. Section 6 concludes the paper.

2 Preliminaries

We shall be concerned with bounds on gambles, i.e. on bounded random numbers.
If X is a gamble, define Mx =sup X, mx = inf X.

Lower (P) and upper (P) previsions are imprecise evaluations of gambles. In
principle, P or P is a mapping from an arbitrary set D of gambles into R. Thus,
D need not be a structured set, such as a linear space.

More consistency notions are available for lower and upper previsions. They
are variants of de Finetti’s definition of coherence [7] for a (precise) prevision P,

termed here dF-coherence:

Definition 1. A mapping P : D — R is a dF-coherent prevision iff, ¥n €
N,Vsq,...,8, € R,VXo,...,X,, € D, defining G = Y. ,s,(X; — P(X;)) we
have that sup G > 0.

In Definition 1, the gamble G has the behavioural interpretation of a gain from
n + 1 transactions s;(X; — P(X;)) on X; with price P(X;),i =0,...,n.

Whenever an expectation F(X) is assessed, it is a dF-coherent prevision for
X [18, Sections 3.2.1, 3.2.2]. The variance 0% of X can be defined in terms of
previsions as Vp(X) = P[(X — P(X))?]. In what follows, the symbols E(X), 0%
will only be employed when quoting results from classical probability theory.

Replacing P with P in Definition 1, we obtain the following consistency
notions:

(a) the definition of coherent lower prevision [18] if we restrict the coefficients
S1,.-.,8, (but not sg) to be non-negative;

(b) the definition of 2-coherent lower prevision [10] if we require further that
n < 1, so that we have (at most) two coefficients in the expression of the
gain, sp € R, s; > 0.

As customary, we shall assume in the sequel that P and P are conjugate, meaning
that
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It is also understood that P, P are defined on the same domain D. (This is
equivalent to defining just one between P, P on a domain D’ with the property
XeD=-XeD)

A lower prevision P and its conjugate P are coherent on D iff P(X) =
min{P(X): P € M}, P(X) =max{P(X): P € M}, VX € D, where M = {P:
P dF-coherent on D, P < P < P} is the credal set of P and P [18].

A dF-coherent prevision P is both a lower and an upper coherent previ-
sion, P = P = P. Lower/upper coherent previsions are clearly also 2-coherent.
The properties of dF-coherent previsions are stronger than those of lower /upper
coherent previsions, which are stronger than those of lower/upper 2-coherent
previsions. For instance, a dF-coherent P is linear: P(X +Y) = P(X) 4+ P(Y),
while only the property P(X +Y) > P(X) + P(Y) obtains in general if P is
coherent, not even that if it is 2-coherent. 2-coherent previsions ensure however
some minimal properties (cf. [10]): we recall, for u € {P, P}:

- (X)) € Imx, Mx] (internality); implies p(c) = ¢, Ve € R;

- X <Y = u(X) <u(Y) (monotonicity);

- p(AX) = Au(X), YA > 0 (positive homogeneity); applies with A € R for
dF-coherent previsions;

- (X +¢) = p(X)+ ¢, Ve € R (translation invariance);

- P, P conjugate implies P(X) < P(X).

In the results in the paper, we shall point out which is the minimal set D on
which P, or P and P, have to be assessed. In their proofs, they may be extended
to larger sets applying the properties listed above, thus guaranteeing 2-coherence
or coherence of the extension. Recall also that there always exists a coherent (2-
coherent) extension on any set of gambles D’ O D of a lower/upper prevision
coherent (2-coherent) on D [10, 18].

When applied to (indicators of) events, all these kinds of previsions boil down
to probabilities (precise or lower/upper), while the conjugacy relation becomes,
for an event A, P(A) = 1 — P(A°).

While being a weak consistency requirement, 2-coherence includes a larger
number of uncertainty models than coherence. For instance, if D is the powerset
of a partition of the sure event {2 into atomic events, assigning conjugate P, P
2-coherent on D corresponds to giving a couple of (normalised) capacities (P, P)
with the additional condition P(A) < P(A)VA € D. 2-coherent previsions on
linear spaces are instead a prominent case of niveloids [6]. Hence, inequalities
that apply to 2-coherent previsions are valid for a great number of models.

3 Markov’s Inequalities

To start our investigation of what corresponds to standard probability inequali-
ties in an imprecise setting, in this section we consider the well known Markov’s
inequality P(X > a) < @,Va > 0, with X non-negative. While requiring sim-
ple computations, the problem of generalising Markov’s inequality to imprecise
previsions already displays the core features of this kind of analysis, pointed out
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in the Introduction. In fact, fwo Markov’s inequalities have been proven in [11,
Proposition 5.1], requiring only 2-coherence of P, P:

Proposition 1 (Markov’s inequalities). Let X be a non-negative gamble.

(a) Let P be a 2-coherent lower prevision on {X, (X > a)}. Then,

T

(X)

P(X >a)< =

,Va >0 (1)

(b) Let P be a 2-coherent upper prevision on {X, (X > a)}. Then,

|

P(X >a) < (X)

a

,Va >0 (2)
Next we introduce further Markov-like inequalities, still with the weak consis-
tency requirement of 2-coherence.

Proposition 2 (Reverse Markov Inequalities). Let P, P be conjugate and
2-coherent on D 2 {X,(X <a)}, X > 0. For any 0 < a < Mx, it holds that

1—P<X)§B(X§a)§MXM_7ﬁ(X) (3)

a X —a

1- 20 cBix <ay < 7Mj\‘[ £ (4)
a X —a

Proof. For a unified proof of (3), (4), let u € {P, P} and u° be its conjugate.
Using either (1) (when p€ = P) or (2) (when p¢ = P) at the last inequality of
the next derivation, we obtain the left-hand inequalities in (3), (4):
e (X)

P

HX <a)=1-p*(X >a) > 1— (X >a) > 1 -

As for the right-hand inequalities, observing that (X < a) = (Mx — X >
Mx — a) and applying either (1) or (2) at the inequality, translation invariance
and conjugacy at the second equality, we have that

(X <a)=p(Mx — X > My —a) < pMx = X) _ Mx — (X))

MX —a MX —Qa
O
When P = P = P, the right-hand inequalities (3), (4) boil down to P(X < a) <
foli(ax), known (for expectations) as Reverse Markov Inequality.

The next lemma is an easy follow-up of Proposition 2:

Lemma 1. In the assumptions of Proposition 2, it holds that

P(X)—a

MX_a’ (XZG)>%

- Mx—a.

ol

P(X >a)>
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Proof. Using again yu € {P, P} and u°, and by either (3) or (4) at the second
inequality,

WX Za) > p(X >a) =1 —p(X <a)>1— Mx &) pX)—a

MX —a MX —Q '
O
By Lemma 1, a bilateral version of inequalities (1), (2) obtains:
P(X)—a P(X) P(X)—a _— P(X)
— < P(X > < = < P(X > < . )
Mx —a <P(X >a) < a ' Mx—a — (X >a) < a (5)

Note that only one inequality in (3) is non-trivial when a # P(X), and no one
for @ = P(X). For instance, if a > P(X) then foli(m > 1, which makes

the right-hand bound in (3) useless: by internality, B()g < a) < 1. A similar
reasoning applies to the left-hand bound in (3) and to the double inequalities in
(4) and in (5).

Markov’s inequalities (1), (2) originate Chebyshev-like inequalities. For ex-
ample, for given b > 0, we have that P(|X — P(X)| > b) < b~ 2P[(X — P(X))?.
The right-hand term of this inequality is upper bounded by one of the Bhatia-
Davis inequalities studied in the next section, see the following Proposition 3 (a).

4 Bhatia-Davis Inequalities

The classical Bhatia-Davis inequality [2] gives an upper bound to the variance
0% of a gamble X:

0% = E[(X - E(X))*’] < (Mx — E(X))(E(X) — mx). (6)

When extending it to lower and upper previsions, we have more options to
replace the inner and outer expectations in the left-hand term of (6) with either
P or P. Intuitively, it should be simpler to bound P[(X — u(X))?] rather than
P[(X — u(X))?], given that, assuming 2-coherence, the former is less than or

equal to the latter, for u(X) = P(X) or u(X) = P(X). In fact, the following
proposition [12] obtains for P[(X — u(X))?]:

Proposition 3. (a) Given P 2-coherent on D 2 {X, (X — P(X))?}, it holds
that

P[(X — P(X))*] < (Mx — P(X))(P(X) — mx)

(b) Civen P, P 2-coherent on D 2 {X, (X — P(X))?}, it holds that
P[(X — P(X))’] < (Mx — P(X))(P(X) — mx).

The next proposition establishes instead two more structured bounds for P[(X —
w(X))?], when u(X) = P(X) or u(X) = P(X), respectively [12].
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Proposition 4. Let P, P be 2-coherent on D 2 {X, (X—P(X))?, (X—P(X))?}.
Then,

P[(X - P(X))*] < max{(Mx — P(X))(P(X) —mx), (P(X) —mx)*}, (7)
P[(X — P(X))?] < max{(Mx — P(X))(P(X) —mx),(Mx — P(X))*}. (8

The mazimum in (7) (in (8)) is equal to (Mx — P(X))(P(X)—mx) (to (Mx —
P(X))(B(X) —mx)) iff P(X) < MFme (iff P(X) > HMxfmx)).

Thus, the upper bound (Mx — P(X))(f(X) —mx) for P[(X — P(X))?] from
Proposition 3 (b) bounds also P[(X — P(X))?], but only if P(X) is ‘sufficiently
low’, and precisely smaller or equal to %; similarly for the bound (Mx —
P(X))(P(X)—mx) in Proposition 3 (a). It can be shown that all these bounds
are sharp, in the sense that they may obtain with equality for non-trivial gambles.
(Examples are given in [12].)

A natural application of P[(X — pu(X))?], P[(X — u(X))?](n € {P,P}) is
to measure the dispersion of X. Regarding this, a distinction arises between 2-
coherence and coherence. In fact, when P and P are coherent we may also resort
to the lower and upper variance of X,

V(X) = min {Vp(X)}, V(X) = max {Ve(X)},

<m
<m

with Vp(X) = P[(X — P(X))?],VP € M [18, Appendix G, Section G2|.

If we think that there is a ‘true’ but unknown prevision P(X) in the credal
set M, preferring V(X) and V(X) as measures of dispersion is quite natural.
However, we must consider that (a) the computation of V(X) and especially
V(X) is in general not simple (special cases are tackled already in [18, Ap-
pendix G, see also [15] for related work), and (b) with 2-coherence only, M may
be empty, V(X), V(X) being then undefined. In case (b), we are necessarily
left with the previsions P[X — u(X)]?, P[X — u(X))?, u(X) € {P(X), P(X)}.
In case (a), the same previsions (and consequently their Bhatia-Davis bounds)
majorise V(X) and V(X), respectively, because of the more general inequalities
V(X) < P[(X —¢)?], V(X) < P[(X — ¢)?], Ve € R [18, Appendix G].

In the sequel of this section, we shall assume coherence of P, P. Coherence
lets us bound the difference |u[(X — P(X))?] — p[(X — P(X))?]|, with 4 = P or
alternatively p = P:

Proposition 5. If P, P are coherent on D D {X, (X — P(X))?, (X — P(X))?},
then

[P[(X = P(X))*] = P[(X — P(X))*]| < (P(X) - P(X))? (9)
[PI(X = P(X))*] = P[(X - P(X))?]| < (P(X) - (X)), (10)

Proof. By positive homogeneity, translation invariance, and the property of co-
herent lower previsions P(X +Y) > P(X) + P(Y), we have that

PI(X — P(X))*] = P[((X = P(X)) + (P(X) - P(X)))?]

> P[(X - P(X))*] + (P(X) - P(X))* + 2(P(X) - P(X))P(X — P(X))
(X)),

P
=P[(X - P(X))’] - (P(X) - P

| <
| <
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which gives P[(X — P(X))?] — P[(X — P(X))?] < (P(X) — P(X))2.
Substituting X with —X in the derivation above, we obtain

Pl(-X - P(-X))’] = P[(-X — P(-X))*] - (P(-X) - P(-X))*. (11)

By conjugacy, it is (=X — P(—=X))? = (-X + P(X))? =
(- X — P(—X))? = (X — P(X))?, while (P(—X)— P(—X))? = ( .
Taking account of these equalities in (11), it holds that P[(X — P(X))?]—P[(X —
P(X))? > —(P(X) — P(X))?. Therefore, (9) obtains.
The proof of (10) is similar, applying instead P(X +Y) < P(X) + P(Y) to
P[(X = P(X))?] = P[(X = P(X)) + (P(X) = P(X)))?]. O
Another follow-up of Bhatia-Davis (imprecise) bounds regards upper and

lower (C'(X,Y) and C(X,Y), respectively) covariances, as defined in [13]:
X,Y) = mi X, )}, C(X,)Y)= XY
Q( ) ) Fl;%l/r\l/[{CP( ) )}7 C( ) ) FI%%{CP( ) )}a

with Cp(X,Y) = P[(X — P(X))(Y —P(Y))] = P(XY)—-P(X)P(Y), VP € M.

The starting point is a bivariate generalisation of Bhatia-Davis inequality
(6). In a form involving expectations, it was proven in [8], while a shorter proof
is given in [12]. Here we give an alternative proof of this result, tailored for
dF-coherent previsions.

Theorem 1 (Bivariate Bhatia-Davis inequalities). Given a dF-coherent
prevision P on D D {X,Y, XY}, it holds that

Cp(X,Y) <min[(P(X) — mx)(My — P(Y)), (Mx — P(X))(P(Y) — my)

(12)
Cp(X,Y) = —min[(P(X) —mx)(P(Y) —my), (Mx — P(X))(My — P(Y))].
(13)
Proof. For X, Y, XY € D, consider the gain
G = (XY — P(XY)) = my (X — P(X)) - Mx(Y - P(Y))
which, by Definition 1, is such that sup G > 0.
We rewrite G as
G = —P(XY) +myP(X) + Mxp(Y) — Mxmy + Z,
where Z = XY —my X — MxY + Mxmy = (X —Mx)(Y—my) <0.
It follows that
0<supG=—-P(XY)+myP(X)+ MxP(Y)— Mxmy +supZ
< 7P(XY) +myP(X) +MXp(Y) — Mxmy
and hence
Cp(X,Y)=P(XY)-P(X)PY)
<myP(X)+ MxP(Y) - Mxmy — P(X)P(Y) (14)

= (Mx — P(X))(P(Y) —my).
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Since Cp(X,Y) = Cp(Y, X), we obtain from (14): Cp(X,Y) = Cp(Y, X) <
(My — P(Y))(P(X) — mx), which completes the proof of (12).

As for (13), recalling that m_x = —Mx, M_x = —mx, Cp(—X,Y)
—Cp(X,Y) and using (12), we obtain

—Cp(X,Y) = Cp(=X,Y) <min[ (P(=X) —m_x)(My - P(Y)),
(M_x = P(=X))(P(Y) —my)]

= min[ (Mx — P(X))(My — P(Y)),

(P(X) —mx)(P(Y) —my),

from which (13) follows immediately. O

The following generalisation of Theorem 1 to lower and upper covariances is
proven in [12]:

Theorem 2. Let P and its conjugate P be coherent on D D {X,Y}. Then,

C(X,Y) < min{ (P(X) — mx)(My — P(Y)), (My — P(Y))(P(X) — mx),
(Mx = P(X))(P(Y) —my), (Mx — P(X))(P(Y) — my)}
C(X,Y) = —min{ (P(X) — mx)(P(Y) = my), (Mx — P(X))(My — P(Y))}
C(X,Y) < min{ (Mx — P(X))(P(Y) = my), (P(X) = mx)(My — P(Y))}
C(X,Y) =z —min{ (Mx — P(X))(My — P(Y)), (Mx — P(X))(My — P(Y)),
(P(X) —mx)(P ( ) = my), (P(X) —mx)(P(Y) — my)}.

The bounds of Theorem 2 are very general, in the sense that they require knowl-
edge of P(X),P(Y), P(X),P(Y) only to be applied. Of course, the counterpart
for this is that they cannot be tight, in general, and might be rather loose in
presence of additional information. Just think, for instance, of the case that
the expert is sure that C(X,Y) > 0. Then, the second bound in Theorem 2 is
trivially true, as well as the fourth (since C(X,Y) > C(X,Y)).

In the case that not even P(-), P(-) are known with a reasonable accurateness
or confidence, some weaker bounds than Bhatia-Davis are available. In particular

(see [12] for details), the following bivariate extension of Popoviciu’s inequality:

Lemma 2. Given D 2 {X,Y}, domain of a coherent lower prevision P and its

conjugate P, it holds that

~ (Mx —mx)(My —my)
4

(15)

When X =Y, (15) boils down to V(X) < V(X) < x=mx)® When V(X) =
V(X) = 0%, we reobtain Popoviciu’s inequality [2].

From the perspective of the degree of information required, inequalities (15)
are extreme: no uncertainty evaluation of X, Y is needed, nor a complete knowl-
edge of their image sets, but just their infima and suprema. Interestingly, it
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is possible to derive some, so to say, hybrid inequalities, that require an inter-
mediate uncertainty knowledge of X, Y, between the minimal one of (15) and
Bhatia-Davis inequalities in Theorem 2. Precisely, a qualitative knowledge of
which is larger between either P(X) or P(X) and either £P(Y) or £P(Y) is
sufficient to apply the next result:

Proposition 6. Let P, P be coherent on D D {X,Y}. It holds that

i) < min{ @r=m)® arp L p(x) < P(Y) or P(X) < P(Y) .
T T ) mind @leemn® b P(X) > P(Y) or P(X) > P(Y)
_ min{ @r=m)® ar i B(X) < P(Y)
CLY) <9 (my? . _ (17)
miny =X, Mp, ¢ if P(X) > P(Y)
C(X,Y) > —min{ MM e Vi p(xX) > —P(Y) (18)
’ — min{ Em g L f P(X) < -P(Y)
— mind (Mx+My)? L [ P(X) > *@(Y) or
7 —anin{i(mx_lrm")2 M } if P(X) < —B(Y)or
oo P(X) < ~P(Y)
where Mp, = (MX_mXL(MY_mY) is the upper bound in (15).

Proof. Inequality (16) is proven in [12].

Proof of (17). If P(X) < P(Y), from the third inequality in Theorem 2 and
applying then the Average Mean-Geometric Mean inequality ab < (“7“’)2, we
obtain C(X,Y) < (P(X) — mx)(My — P(Y)) < (P(Y) — mx)(My — P(Y)) <
(My *4mx)2 )

If P(X) > P(Y), apply this result to C(Y, X) to prove that C(X,Y)
C(Y,X) < M. This, recalling also Lemma 2, proves (17).

Proof of (18). Using the property C(—X,Y) = —C(X,Y), which is easy to
prove, apply (17) to C(—X,Y). Simple computations, exploiting conjugacy and
the properties m_x = —Mx, M_x = —mx, give (18).

The proof of (19) is similar to that of (18), using C(—X,Y) = —C(X,Y)
and (16). O

Note that inequalities (17) and (18) are more restrictive than (16) and (19),
respectively: when (17) (or (18)) obtains, (16) (or (19)) obtains too.

5 Further Inequalities

As already mentioned in the Introduction, little attention has been so far paid in
the literature to probability inequalities with coherent lower/upper previsions,
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and even less with 2-coherent ones. Some inequalities that may be expressed by
means of Lebesgue integrals in classical probability theory have instead been
extended employing other kinds of integrals. It is the case of Jensen’s inequality,
that has been studied by means of Choquet and other integrals (see e.g. [9, 14,
19]). Jensen’s inequality has been studied for imprecise previsions too in [11,
Sections 3, 4], showing that 2-coherence is again sufficient to obtain versions of
the inequality. We report the main result:

Theorem 3 (Jensen’s inequalities). Let P, P be 2-coherent on D, X € D,
I C R an interval that contains the image set of X, ¢ : I — R a convex function,
¥ I — R a concave function, with right (left) derivatives at x, respectively,
¢ (x), ¥\ (x) (¢ (z), ¥ _(z)). Let P(X), P(X) be interior points of I and
#(X),¥(X) € D. Then,

P(p(X)) < min{y(P(X)), $(P(X))}, P(6(X)) = max{$(P(X)), 6(P(X))}.

Besides,

if ¢, (P(X)) = 0 then P(¢(X)) = ¢(P(X)),
if _(P(X)) < 0 then P(¢(X)) = ¢(P(X));
if " (P(X)) 2 0 then P(¢(X)) < ¢ (P(X)),
if ! (P(X)) < 0 then P((X)) < $(P(X)).

It is also possible to generalise an improvement to Jensen’s inequality given in
[1], cf. [11, Section 3.2]. While the original improvement applies in the precise
case and when X takes values in Z, the version in [11] requires 2-coherence and
much less restrictive conditions on the image set of X.

Additional follow-ups of Jensen’s inequalities include versions of Liapunov’s
inequality and, requiring coherence, applications to the moment problem [11,
Section 4].

When seeking tail bounds to a gamble X, Cantelli’s inequalities [3,17] com-
pete with Markov’s. They state that, Ve > 0,

o2 o2
PIX<EX)-g)< —%X_ P(X>EX < X
(X < E(X) E)_a§(+52’ (X = B )+E)_J§(+€2

Thus and unlike Markov’s inequalities, they do not require non-negativity of
X, but involve its variance. Extensions of Cantelli’s inequalities to imprecise
previsions are introduced in [11, Section 6]. It is interesting to remark that:

i) Unlike Markov’s inequalities, the most general versions of Cantelli’s inequal-
ities do not necessarily require 2-coherence, but some partly different condi-
tions, see [11, Proposition 6.2].

ii) When P or P are coherent, Cantelli’s inequalities involve the upper and lower
variances V(X), V(X), as appears from the next proposition [11, Proposi-
tion 6.3].
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Proposition 7. Let X be a gamble, ¢ > 0, P, P conjugate and coherent on
Then,

P(X <P(X)-¢) < V(‘)/(())i)gz P(X<P(X)-¢)< V(‘)/(())?EQ
P(X > P(X)+¢) < V(X()X:E? P(X 2 P(X)+¢) < V&(fﬁg

From the upper line formulae of Proposition 7, it appears that Cantelli’s inequal-
ities may bound from above the left tail of the lower distribution function of X,
Fy(x) = P(X < x). Applying conjugacy to the lower line inequalities gives
formulae bounding from below the right tail of the upper distribution function
Fx(z) = P(X < ). Thus, these inequalities may play a role when the p-box
(Fy, Fx) is imprecisely known. When inadequately known, V(X), V(X) can be
replaced by, respectively, P[(X —u(X))?] and P[(X — u(X))?] in the formulae of

Proposition 7 (u € {P, P}), because of the arithmetic inequality o < o for
a,b,c > 0,a < c. By the same inequality, P[(X — p(X))?] and P[(X — p(X))?]
can be replaced, if unknown, by their Bhatia-Davis bounds (Propositions 4, 5).

6 Conclusions

The results in this paper confirm that more versions of probability inequalities
may be available with imprecise probabilities. Their expression and potential ap-
plications depend also on the degree of consistency required. Often, 2-coherence
alone suffices. Anyway, this should not be taken as a rule: the inequalities we
considered are based on evaluations on very few gambles, one or two each time.
This is in line with the definition of 2-coherence, which considers at most two
gambles simultaneously. Future work includes other types of inequalities, or more
complex situations when a higher number of gambles is involved, or specific as-
sumptions (like some forms of stochastic independence) are made.
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