A Fuzzy Ensemble of Features Selectors through
SMART-or Aggregation and Yager fuzzy
Ordering*

Marco Baioletti![0000-0001-5630—7173] Ay dpeq Capotortil’Q[0000_0002_1337_8315],
and Alessio Troianij![0000-0002-1192-7309]

! Dipartimento di Matematica e Informatica, University of Perugia, Perugia, Italy
2 member of GNAMPA-INdAM group

Abstract. We propose a novel feature selection (FS) method based on
peculiar fuzzy set generation, aggregation, and ordering. In particular,
here we propose to elicit the fuzzy membership by a proper probability-
possibility transformation of frequencies stemming from the bootstrap
application of different filter FS methods. At the same time, we ag-
gregate such vague scores of each feature via the recently introduced
SMART-or fuzzy aggregation operator. Finally, to rank the features for
the selection proposal we adopt Yager’s ordering. Empirical results on
benchmark databases show an overperformance of our approach with
respect to different generation techniques, or aggregation functions and
orderings.
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1 DMotivations, state of the art and comparison with
other approaches

The need to extract useful information from an extremely large dataset where
thousands of features describe each data point is, nowadays, ubiquitous. Exam-
ples span a large array of fields from healthcare to environmental monitoring to
marketing to include a few examples.
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Though in principle datasets with a vast number of features could lead to
more accurate predictions, the abundance of figures comes together with higher
computational cost and complexity to process the data.

In addition, it is common that the accuracy of predictions is mostly driven
by a small, but unfortunately unknown, set of features.

In this framework, determining the most relevant features to obtain accurate
predictions would be beneficial in two respects: on one hand, it would reduce
the complexity of the problem; on the other hand, it would help to improve the
explainability of the Artificial Intelligence model being used (see, e.g., [10]).

A Feature Selection (F'S) method assigns a score to each feature producing an
importance rank that allows discarding the least relevant ones. However, though
several approaches for feature selection have been developed, there is no unique
feature selection method suitable for all possible applications. Moreover, these
methods are very sensitive with respect to the input data. Consequently, even
in the context of a specific application, the results produced by each selection
method, considered individually, prove to be highly unstable.

To improve the stability of the feature selection procedure, ensembles of
feature selection methods have been recently proposed and are gaining wide
popularity (see, e.g., [3,13]). An ensemble method consists of a suitable combi-
nation of the results of several pure feature selection methods. To produce this
combination, two different techniques are common: one consists in merging the
different feature rankings stemming from the pure methods; the other aggregates
the specific scores of each feature assigned by each pure method. In line with
[20,21] we choose to follow the latter approach, obtaining a final feature rank by
aggregating the scores obtained by four different pure feature selection methods.

Since one of the main goals of the ensemble technique is to have a robust
method, in line again with [20,21], we choose the four different feature selection
methods among the so-called filter ones. We made such a choice because, dif-
ferently from the other common types of selectors, namely the wrapped and the
embedded ones (see [15]), filter methods are model agnostic, i.e. they assign the
scores to each feature independently of any subsequent learning algorithm used
for classification or clustering. This renders the proposal generally applicable. To
compare our method with those presented in [20,21], we will choose one differ-
ent filter-based traditional feature selection algorithm in each of the four main
groups (for more details refer again to [15]):

— Correlation-based Feature Selection (CFS) [11] among the statistical-based
methods;

— ReliefF Feature Selection (ReliefF) [16] among the similarity-based methods;

— Mutual Information based Feature Selection (MIFS) [1] among the information-
theoretical-based methods;

— Supervised Infinite Feature Selection (Inf-FSg) [17] among the graph-based
methods.

Note that, among the graph-based methods, we choose the Inf-FSg instead of
the similar IF'S method adopted in [20] or the ILFS method used in [21] because
of its superior performance as shown in [17].



Fuzzy ensemble of Feature Selectors with SMART-or aggregation

While aggregation attenuates the different behaviors of the chosen method,
the instability mentioned above of every single method can be attenuated by iter-
ating computations on different subsets of the original datasets and considering
the variability of the results. This latter variability is usually obtained through
bootstrapping techniques and by expressing the vagueness of the results through
fuzzy sets, as done again in [20,21].

In their latter contribution, Shen et al. conclude with the need to explore
fuzzy set generation and aggregation methods different from those they used:
in [20] fuzzy memberships coincide with relative frequencies of empirical scores,
whereas in [21] they are estimated through Gaussian shapes based on scores’
mean and variance.

Here, in order to determine fuzzy membership, we will follow the principle
of maximum specificity through a probability-possibility transformation as pro-
posed in [8] (for more details about its maximum specificity refer to [9]).

We propose an alternative method, w.r.t. the aforementioned authors also for
the aggregation and the defuzzification/feature-ranking steps. Indeed, instead of
the weighted fuzzy combination and center of average defuzzifier used in [20],
or the drastic sum aggregation and centroid defuzzification used in [21], here
we will apply the recent SMART-or [2] as aggregation operator and the Yager’s
ordering [22] to obtain the feature-ranking.

This is because on one side - differently from the weighted combination or
the drastic sum - the SMART-or operator does not need any weight choice,
and hence no training, and takes into the right consideration of the different
degrees of agreement/disagreements among the different fuzzy sets; on the other
side - differently from the center of average or the centroid defuzzifiers - Yager’s
ordering is more sensitive to the specific shapes of the membership functions we
obtained. Moreover, the use of such ordering has produced more accurate and
stable classification results with respect to other proposals, like those using ideal
benchmarks (see e.g. [5,6]).

For the sake of comparing our method with the one proposed by Shen et
al. in [21], we will adopt the same bootstrapping scheme, the same four FS
methods, with the slight aforementioned difference for the graph-based one, and
the same data frames taken from the UCI machine learning repository [7] for
the empirical result. Anyhow, we remark that our method can be applied to an
arbitrary ensemble method based on arbitrary filter-based FS algorithms.

The rest of the paper is organized as follows: in Section 2 we formalize the
notation and the main concepts adopted in the rest of the paper; in Section 3 we
will detail the elicitation procedure for the membership functions, the recently
introduced SMART-or operator to aggregate different fuzzy numbers and its
generalization used here for fuzzy quantities, together with the different orderings
that can be used to arrive at a final ranking among the features; finally in Section
4 we will report the performances in terms of accuracy, measured by the area
under the Receiver Operating Curve (AUC) [18], and stability, measured through
the specific consistency index introduced in [14].
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2 Notation and main steps

Let us introduce the quantities involved in our method. Let D be a given dataset
containing S data samples (instances), each expressing N values of different
features X1, ..., X plus one class label Y. The goal is to build an order (rank)
of the N features from the least to the most relevant to predict (classify) the
class value. Such ranking will be obtained by combining (aggregate) the outputs
of M feature selection methods F'S;, j =1,..., M.

The procedure follows the same three main steps introduced in [21]:

1. a bootstrap phase, where scores S;J € [0,1] are generated in each I-th run
of the bootstrap sampling, [ = 1,..., L, for each i-th feature, ¢ = 1,..., N,
by each method F'S;, j =1,..., M, and transformed into fuzzy membership
functions u§» of the unit interval [0, 1];

2. an aggregation phase using a fuzzy operator obtaining a single membership
it for each feature, i = 1,..., N;

3. afinal ranking rq, ..., ry obtained through some defuzzification method and
expressing the relevance, from the least to the most important, of the fea-
tures.

As already mentioned and as we will detail in the next two sections, for the
first step we will use the same variability generation of [21], i.e. the scores are
obtained by the application of the M = 4 filter feature selectors CFS, ReliefF,
MIFS, Inf-FSg - with the slight difference in Inf-FSg already described in the
previous section - in each of the L = 100 bootstrap samplings. On the contrary,
our approach is completely different from the aforementioned proposal about the
fuzzy membership transformation. Indeed, while in [21] relative frequencies of
the scores are transformed into Gaussian-shaped memberships based on scores’
mean and variance, here we will transform them through a so-called probabili-
ty/possibility transformation (see details in the next section).

In the other two procedural steps, we further differentiate from [21].

In particular, to aggregate the four memberships 1}, j = 1,...,M = 4,
of each i-th feature we used the recently introduced SMART-or operator ¥ [2]
because more expressive of the agreements/disagreements among the different
inputs with respect to the drastic sum adopted in [21].

Moreover, for the last ordering step, we have taken into account several orders
among fuzzy sets to see which one produces the best performance:

— the centroid-based ordering already used in [21]

— Chen’s ordering based on comparison with maximizing set and minimizing
set [4]

an ad-hoc ordering implemented by us based on similarity with respect to
the MIN operator among fuzzy numbers [12]

— Yager’s ordering among fuzzy quantities on the unit interval [22]

As we will see in empirical result Section 4, Yager’s ordering has resulted in
higher effectiveness in terms of accuracy and stability results.
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3 Fuzzy sets generation, aggregation and ranking

The bootstrap sampling consists of L = 100 generation of random samples with
replacement of the same size S of the original dataset D. Hence, in each run,
some instances could be present several times, while others could not be present.

By applying one specific feature selection method F'S; to a specific sample
we obtain 100 scores Sji',z for each feature. These scores are normalized into the
[0, 1] interval with the usual transformation

fi ;J — min S; 1)
P max S; — min S;
where min S; and max S; are the minimum and the maximum of all the scores
obtained with F'S; for all the N features.

These S normalized scores are then discretized into a 100 equally spaced
class distribution with intervals i, = [(k — 1)/100, k/100[ for k = 1,...,99, and
i100 = [0.99, 1], obtaining a vector f} of 100 relative frequencies f7 ;, ..., figg ;-
These relative frequencies can be thought of as probability mass function values
and consequently transformed into a fuzzy membership function ,ué through a
probability-possibility transformation among those proposed in [8]. In particular,
we use the probability-possibility transformation proposed in [8, Section 2.3] for
the finite case. This is because of the discretization we performed through the
previous distribution in classes.

In fact, we can define the membership functions, thought of as possibility
distributions, by the transformation

pi(z) = > fi; Vaxcipwith Ly={l€1,...,100|f; < fi;}. (2
leLy,

Such transformations dominate f}, ie. uz(x) > f,:j for any = € ix; they are
order-equivalent to f;, ie. M;—(ﬂUl) < ,ué(ﬂcg) iff 21 € ig, and zy € ig, such
that fp . < f,;; and they are maximally specific, i.e. any other possibility
distribution 7; dominating f; and ordering equivalent is such that 7} (z) > uj(z).

These M fuzzy member functions pf%, j = 1,..., M = 4, can be aggregated
together through the SMART-or V operator, obtaining a single fuzzy membership
function

A=y Y Yy (3)

for each feature, i =1,..., N.

The SMART-or Y operates as a weighted average of the extrema of the differ-
ent alpha-cuts, with weights tuned to obtain a specifically aimed behavior of the
merging, i.e, towards the more external values (in line with the canonical max
t-conorm if applied ”vertically”). This behavior emphasizes the disagreement, in
terms of weak overlapping, of the different alpha-cuts. To obtain this, fixing an
alpha-cut, the weights of the M — 1 outer extrema, with indexes in O; for the
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left extrema and in O, for the right ones, are (1 +¢;), with

Zf 1}" b
6j{ ifA#0 (4)

0 otherwise

with 7% the length of the various overlapping and A the range of the alpha-cuts,
as depicted in Fig.1.
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Fig. 1: Overlapping lengths w;- and range A of alpha-cuts involved in the weights
€; for the SMART-or Y aggregation: on the left between two memberships; on

the right among three.

For the two inner extrema, i.e. the largest left extremum and the lowest right

extremum, the weights are simply (1 -3 jeo, €) (for a full description of this

operator Y refer to [2]).
Note that, since the previously described discretization of the normalized

scores into the class distribution, the membership functions yé are step functions,
hence with a finite number of distinct alpha-cuts. This renders the SMART-or
operator Y easily applicable and effectively implementable for our purposes, even
if the original formulation in [2] was only for fuzzy numbers, while here we deal

with more general fuzzy quantities.
In Fig.2 it is possible to appreciate the difference between the SMART-or

aggregation and the drastic-sum conorm

pa(z) if pp(z) =0
Drastic Sum(ua(z), pp(x)) = ¢ pp(x) if ﬁA(x) =0 (5)
1 otherwise

adopted in [21] for a feature in one of the datasets used in the empirical results

(see Tab.1 in the next Sec.4).
Once we obtain the aggregated fuzzy membership functions (3) for all the

N features, as shown e.g. in Fig.3, we can rank them in some ascending order.
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Fig.2: fuzzy memberships and their aggregation for feature X, in the
Glass datasets: Gaussian-shaped memberships aggregated with drastic sum
(left); probablhty/posslblhty transformed membership aggregated through the
SMART-or ¥ (right).

In literature, there are several reasonable possible orderings of fuzzy sets in the
unit interval, as ours are. The most popular, and for this reason used in [21],
is the ordering based on the defuzzification through the centroids (centers of
gravity). Although being very practical and easily computable, this ordering is
very insensitive with respect to the shapes of the input memberships. Hence,
to compare the performances of different orderings, we also compute different
indexes.

More sensible orderings are those in line with [4,5,6] that compute an index
measuring a distance with two benchmark minimizing and maximizing fuzzy sets
(as those shown in Fig.3 with dashed/dotted lines). We tried an ordering based
on the performance index proposed in [6]:

d:
P ©

= @)l = [ 77 ()~ ima (@) da
SUpPy U SUPPiain SUPPA’ U SUPPmax

but with the two benchmark sets defined as in [4]:

Mmm=(%“‘ﬁf Mﬂﬂz(xﬂMlY (®)

Tmax — Lmin Tmax — Lmin

where Z,,;n and Tmax are the minimum and maximum, respectively, of the union
of the supports of all the memberships 7', i = 1,..., N, while we toned the
parameter k to 2 for better distinguish mostly overlapping memberships close to
the benchmarks.
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Fig.3: Aggregated fuzzy memberships for features Xi,..., X9 in Glass dataset
and the two min and max benchmarks.

Since the benchmark sets (8) depend only on the supports of the input mem-
berships and their shapes, we decide to evaluate also a different reference set,
specifically that obtained by applying the min operators among a set of fuzzy
numbers (for more details see e.g. [12]). So we recursively compute such minimum
among a subset with indexes I C N

MIN 1 (z) = sup min{z* (z;)|i € I}. (9)
rz=min{z;|i€I}
We then rank at the lower available position the feature X; with membership
7i* more similar to MIN ,r, with similarity between fuzzy sets measured in the
canonical way

_ Jo (F(@) AMIN i (x)) do
Jo (@ (@) v MIN .1 () da

The index i of such feature is removed from the index set I and the procedure

is iterated.

We finally also implemented the ordering among fuzzy quantities in the unit
interval - as our fi* are - proposed by Yager in [22] that is based on the following
function

SIM (", MIN 1) (10)

1
F(a') = / M(Ci)da i=1,...,N (11)
0
where M (C?) are the mean values of the elements in the alpha-cuts C? of the
memberships '
4 Empirical results

For comparison reasons, we implemented four different ensembles of feature
selection: one that mimics exactly the framework used in [21], named “Dras-
tic sum/centroid”, and the other three implementing our framework described
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in the previous section, differentiated by the final ordering method and hence
named “SmartOR/minmax”, “SmartOR/SIMmin”, and “SmartOr/Yager”, re-
spectively.

The comparisons have been conducted by measuring the performances in
terms of classification accuracy and stability of the four different ensembles ap-
plied to the same eight datasets used in [21] as testing data (since our framework
is parameter-free we don’t need any training data repository). Such datasets are
taken from the UCI machine learning repository [7] and are usually adopted as
benchmarks. Their description is reported in Tab.1.

Table 1: General description of testing data repository

Dataset n. class labels (C)  n. features (N)  n. instances (S) 2
Appendicitis 2 7 106 7.57
BCC 2 9 116 6.44
Breast Tissue 6 9 106 2.0
CMSC 2 18 540 15.0
Glass 6 9 214 4.0
Musk 2 166 476 1.43
WDBC 2 30 569 9.48
Yeast 10 8 1484 18.55

We have designed a 10-fold cross-validation framework with backward feature
elimination. This means that each dataset is randomly split into 10 subsets and,
cyclically, one of them is used to perform classification predictions by removing
one feature per time on the basis of the rankings estimated on the rest of the
dataset through the four alternative ensembles.

As a classification algorithm, we preferred the Naive Bayes (NB) with respect
to other possibilities since its good performances are widely recognized, but es-
pecially because it is based on the assumption of stochastic independence among
the features and our filter features selectors score the feature individually, hence
independently from each other.

As far as the performance metrics are concerned, we chose to measure the
accuracy of the predictions through the widely adopted area under the Receiver
Operating Curve (AUC) [18]. Since the 10-fold cross-validation schema, we ob-
tain one value of such AUC in any one of the 10 runs. Hence, for each dataset
and each ensemble, we ended up with a mean AUC for each removed feature, as
illustrated, e.g., in Fig.4a for the BCC dataset.

About stability, we adopted the consistency index specifically introduced in
[14] for the feature selection

2
r—% rN — k?

k-5 7 k(N k)

Io(A,B) = (12)
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Fig. 4: mean AUC and I paths for the BCC dataset

where A and B are proper subset of the features Xi,..., Xy with same cardi-
nality k£ and cardinality of common elements (intersection) 7. In our case, the
feature subsets are composed of the best k, k = N —1,...,1, features stemming
in each learning phase of the cross-validation. Hence, the index I is computed
pairwise among them and for each method and each dataset we have a I~ value
for each removed feature, as illustrated, e.g., in Fig.4b for the BCC dataset.

Since the main goal of any feature selector is to decrease the space complexity,
for each dataset in Tab.1l, we ranked the four different ensembles on the base
of either AUC and I index globally, as overall weighted mean indexes, and on
three peculiar cut points: at only 2, at log,(IV), and at VN features remaining,
respectively. In the overall weighted mean indexes, each value of the mean AUC
and I is multiplied by the percentage of the number of features reduced in each
iteration of the backward elimination.

Since the performances of the ensembles change in each dataset, we synthe-
sized them with mean ranks. Note that these ranks go from the best to the worst,
hence best-performance ensembles have lower ranks.

Having two decision criteria, mean AUC and I based ranks, we firstly select
the best ensembles based on the classification accuracy (mean AUC based ranks)
and later we decide the best ensemble on the basis of the stability (I based mean
ranks).

Results for the first criterion are reported in Tab.2, where it results that our
ensembles with orders based on min and max benchmarks (8) and on Yager’s
index (11) outperform the other two.

Since there is no dominance between the last two ensembles, we passed to
consider for them the I- based mean ranks at the same points, obtaining the
results reported in Tab.3.

From these results, we can assert that our framework based on the SMART-or
aggregation operator and Yager’s ordering outperforms the others.
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Table 2: Global and at cut points AUC based mean ranks for the four ensembles
with aggregation operator and ordering reported in the first column

AUC based mean ranks

ensemble
global 2 features  log,(N) features /N features
Drastic sum/centroid 2.625 2.625 2.75 2.375
SmartOR/SIMmin 3.375 3.25 3.375 3.625
SmartOR/minmax 2.25 2.0 1.9375 2.0
SmartOr/Yager 1.75 2.125 1.9375 2.0

Table 3: Global and at cut points I based mean ranks for the ensembles with
SMART-or aggregation operator in both, and with ordering based on min and
max benchmarks (8) or on Yager’s index (11), respectively.

Ic based mean ranks

average/ordering
global 2 features log,(N) features /N features
SmartOR/minmax 1.75 1.8125 1.75 1.75
SmartOr/Yager 1.25 1.1875 1.25 1.25

5 Conclusion and future developments

We propose a fuzzy ensemble of filter feature selections based on the recently
introduced SMART-or operator for the aggregation step and Yager’s ordering of
fuzzy sets in the unit interval for the ranking.

Comparison with other similar approaches [20,21] and other orderings applied
to benchmark datasets has shown the overperformance of the proposal.

Our proposal can be extended to other ambits, e.g. to mathematical physics
to select main contributions to lattice-gas energy fluctuations ([19]), or to deci-
sion theory whenever there is a poll of N experts, or sources of information, that
express fuzzy grades on M attributes. For each attribute, the N fuzzy grades are
aggregated through the SMART-or operator, obtaining a list of M final grades
so that a ranking among attributes can be performed.

In the future, it could be helpful to explore other fuzzy orderings that could
produce even more stable results. Moreover, due to the variability in performance
indexes, a different fully fuzzy analysis of the feature selection results could be
performed.
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