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Abstract. The notion of a continuous MV -valued fuzzy relation in
Chang topological fuzzy spaces is defined, and the category Top of these
spaces with continuous fuzzy relations as morphisms is presented. Two
special subcategories of Top are presented, using the category of ap-
proximation spaces and the category of fuzzy partitions, both with fuzzy
relations as morphisms. The concept of a fuzzy groupoid is defined for
objects of these categories using the notion of fuzzy products in these
subcategories.
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1 Introduction

Various extensions of classical algebraic structures to L-fuzzy structures are often
used in the theory and applications of L-fuzzy sets. Typical examples are the
extensions of monoids to L-fuzzy monoids [4, 5, 8], groups to L-fuzzy groups [3,
6] or rings to L-fuzzy rings [11, 15], and analogously for many other algebraic
structures. Most of these L-fuzzy extensions use a standard procedure to define a
L-fuzzy algebraic structure from a standard algebraic structure. If, for example,
S = (X,+) is an algebraic structure with one binary operation, then the L-fuzzy
extension S of this structure can be defined as a L-fuzzy set S : X → L such
that for arbitrary elements x, y ∈ X, the inequality S(x + y) ≥ S(x) ∧ S(y) is
satisfied. You can proceed in an analogous way when expanding more complex
algebraic structures. However, fuzzy extensions of algebraic structures defined
in this way do not have the structure of classical algebraic structures on fuzzy
objects, i.e. sets of fuzzy objects of a given type on which, for example, a binary
operation is defined extending a classical binary operation in an underlying set.
Fuzzy extensions of this second type can, for example, be obtained using various
extension principles which extend binary operations to sets of fuzzy objects,
such as the Zadeh extension principle or similar procedures. The disadvantage
of this procedure is that the algebraic structures created in this way on fuzzy
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objects usually have very few properties similar to the properties of the original
algebraic structures.

The problem of extending algebraic structures to fuzzy structures becomes
even more complicated if the extended fuzzy structures are objects of the category
of fuzzy objects, where the morphisms between objects are precisely defined. An
example of such an extension can be the effort to extend the algebraic structure
of a monoid to objects of different categories of fuzzy topological spaces, with
differently defined morphisms between individual spaces. The complication of
such a procedure then lies, among other things, in the fact that in order to
extend, for example, a binary operation + : X × X → X to an object X of
a category K, we must ensure that in category K there is a certain type of
product X × X of this object X and further that the extended new operation
⊕ : X × X → X is a morphism in this category K.

In category theory, there are tools that allow us to work with these extended
algebraic structures. One such tool is the theory of monoids in monoidal cat-
egories (see [9]).This theory assumes that in a given category K there exists ,
among other things, a certain type of product ⊞ : K×K → K, which is a func-
tor from the product of categories K × K to K and has some other relatively
strict properties. A monoid in a monoidal category K is an object X of K with a
morphism ⊕ : X ⊞X → X that satisfies some axioms. However, these conditions
and axioms can become difficult to fulfill, especially in a situation where K is
a category of fuzzy objects, where the morphisms between objects are relations
instead of classical mappings. This was mentioned, among other things, in [7],
where a certain modification of these terms was also proposed.

Why can’t these methods of category theory be directly applied to situa-
tions where morphisms are fuzzy relations? The problem lies in the definition
of basic concepts in category theory, such as the product of objects. This con-
cept requires, among other things, that for certain constructions there is exactly
one morphism in K that satisfies the required properties, or that the so-called
commutativity in the morphism diagram requires the exact equality of all paths
in this diagram. Unfortunately, in the case of L-fuzzy relations as morphisms,
these conditions are often impossible to satisfy.

In order to be able to use the methods of category theory for these categories
as well, one possibility is to modify some categorical constructions and concepts
so that they can also be used for these types of fuzzy set categories.

In this paper, we deal with two categories of L-fuzzy topological spaces,
where the morphisms are continuous L-fuzzy relations. In these categories, which
are based on the well-known category of L-fuzzy approximation spaces or the
catagory of L-fuzzy partitions, we investigate conditions in which classical al-
gebraic binary operations in sets can be extended to algebraic operations over
objects of these categories in such a way that these extensions are again mor-
phisms in these categories, i.e. continuous L-fuzzy relations. These conditions
are presented as compatibility conditions between the original operation + in
the given set X and the structure of the object X of the category K extending
object X.
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2 Preliminaries

In the paper we deal with L-valued fuzzy sets, where L is a complete MV -
algebra, i.e. algebraic system (L,∨,∧,⊗,⊕,¬, 0L, 1L) such that (L,∨,∧,⊗, 0L,
1L) is a complete residuated lattice and satisfies the following axioms:

¬¬x = x, x⊕ ¬0L = ¬0L,¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,¬(x⊗ y) = ¬x⊕ ¬y.

For more information on MV -algebras, see, e.g. [2]. By the L-fuzzy set in a
set X we understand a mapping X → L. One of the principal notions of the
paper is the notion of the L-fuzzy relation. Unlike the standard notation of fuzzy
relations from X to Y as fuzzy subsets in the Cartesian product X × Y , we use
a notation that comes from the theory of Kleisli categories of power set monads.
For more information on these categories, see, e.g. [9, 16]. By a L-fuzzy relation
from X to Y we understand a mapping f : X → LY that will be denoted by
f : X ⇝ Y . If g : Y ⇝ Z is L-fuzzy relation, its composition with f is indicated
by g♢f : X ⇝ Z and is defined by

x ∈ X, z ∈ Z, (g♢f)(x)(z) =
∨
y∈Y

f(x)(y)⊗ g(y)(z).

We can also use another definition of a composition ♢, denoted by ♢∗, defined
by

x ∈ X, z ∈ Z, (g♢∗f)(x)(z) =
∧
y∈Y

f(x)(y)⊕ g(y)(z).

In [13], for arbitrary L-fuzzy relation f : X ⇝ Y we introduced the following
extending mappings LX → LY :

f↑ := f♢1LX , f↓ := ¬f♢∗1LX

and ”inverse” extending mapping LY → LX :

⇑f = f−1♢1LY , ⇓f = ¬f♢∗1LY .

These extended mappings have several important properties. Most of these
properties were presented in [13]. We list some of these properties here for illus-
tration.

Lemma 1. Let f : X ⇝ Y be a L-fuzzy relation and let a ∈ L, s, p ∈ LX , si ∈
LX , r, t, ti ∈ LY , i ∈ I.

1. f↑(s) = ¬f↓(¬s), f↓(s) = ¬f↑(¬s),
2. f↑(

⋃
i si) =

⋃
i f

↑(si), f
↓(
⋂

i si) =
⋂

i f
↓(si), f

↑(s ∩ p) ≤ f↑(s) ∩ f↑(p),
3. ⇓f(

⋂
i∈I ti) =

⋂
i∈I

⇓f(ti),
⇑f(

⋃
i∈I ti) =

⋃
i∈I

⇑f(ti),
4. ⇓f(a ⊕ t) = a ⊕ ⇓f(t), ⇑f(a ⊗ t) = a ⊗ ⇑f(t), f↑(α ⊗ s) = α ⊗ f↑(s),

f↓(α⊕ s) = α⊕ f↓(s),
5. ⇑f(t) = ¬(⇓f(¬t))), ⇓f(t) = ¬(⇑f(¬t)).
6. If f : X ⇝ X is reflexive, we have ⇑f(t) ≥ t ≥ ⇓f(t),
7. Let f : X ⇝ Y and g : Y ⇝ Z be L-relations. We have

⇑f.⇑g = ⇑(g♢f), ⇓f.⇑g = ⇓(g♢f), g↑.f↑ = (g♢f)↑, g↓.f↓ = (g♢f)↓.
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3 L-fuzzy topological spaces

In this section, we will define the basic properties of L-fuzzy topological spaces,
and we present two examples of L-fuzzy topological spaces that we use in the
rest of the paper. The basic definition of this type of space was presented by
C.Chang [1], and a common feature of most publications on this space is that only
continuous mappings are used for morphisms between two L-fuzzy topological
spaces. In this section, we will therefore also focus on defining the concept of a
continuous L-fuzzy relation.

We recall the definition of a strong Chang L-fuzzy topology.

Definition 1. A strong Chang L-fuzzy topology in a set X is a subset T ⊆ LX

such that

1. {si : i ∈ I} ⊆ T ⇒
⋃

i∈I si ∈ T ,
2. u, v ∈ T ⇒ u ∩ v ∈ T ,
3. α ∈ L, s ∈ T ⇒ αX ⊗ s ∈ T
4. 0L, 1L ∈ T .

Elements of T are open L-fuzzy sets and elements of T c = {¬s : s ∈ T } are
closed L-fuzzy sets. The pair (X, T ) is called a strong Chang L-fuzzy topological
space, briefly L-fuzzy topological space only.

When defining the concept of a continuous L-fuzzy relation between two L-
fuzzy topological spaces, we will proceed analogously as in the case of continuous
mappings, with the difference that instead of a preimage of a mapping, we use
a preimage of a L-fuzzy relation.

Definition 2. Let (X, T ) and (Y,F) be L-fuzzy topological spaces. A L-fuzzy
relation f : X ⇝ Y is called ⇑-continuous, if the implication holds:

∀t ∈ F ⇒ ⇑f(t) ∈ T .

Now we can define the category of L-fuzzy tpologcal spaces with continuous
L-fuzzy relations as morphisms.

Definition 3. The category Top is defined by

1. Objects are L-fuzzy topological spaces (X, T ),
2. Morphisms from (X, T ) to (Y,F) are ⇑-continuous L-fuzzy relations

f : X ⇝ Y ,
3. Composition of morphisms is defined by ♢,
4. For an object (X, T ) the unit morphism 1(X,T ) equals to ηX : X ⇝ X,

defined by

ηX(x)(x′) =

{
1L, x = x′,

0L, x ̸= x′ .
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Examples of L-fuzzy topological spaces that we use in this paper are based
on two types of L-fuzzy objects that are frequently used in fuzzy sets theory
and applications. These objects are L-fuzzy approximation spaces and L-fuzzy
partitions. For more information about these objects, see, e.g. [10, 12, 14, 17].
Unlike most publications dealing with these fuzzy objects, we will use L-fuzzy
relations as morphisms in the categories of these objects.

Definition 4. The category RSet(L) is defined by

1. Objects are L-fuzzy approximation spaces (X, δ), where δ : X ⇝ X is L-fuzzy
similarity relation, that is, it satisfies the following axioms

δ♢δ ≤ δ, δ−1 = δ, δ ≥ ηX ,

where ηX : X ⇝ X is defined by ηX(x)(x′) =

{
1X , x = x′,

0L, x ̸= x′ .

2. f : (X, δ) → (Y, γ) is a morphism if f : X ⇝ Y is L-fuzzy relation such that

f♢δ ≤ f, γ♢f ≤ f.

3. The composition of morphisms is defined by ♢.
4. The unit morphisms 1(X,δ) equal to δ.

Analogically, we equip fuzzy partition objects with L-fuzzy relational mor-
phisms.

Definition 5. The category RSpace(L) of fuzzy partitions with L-fuzzy rela-
tional morphisms is defined by

1. Objects are pairs [X,A], where X is a set and A : |A| ⇝ X, where |A| is
an index set and {core(A(i)) : i ∈ |A|} is a partition of a set X, where
core(A(i)) = {x ∈ X : A(i)(x) = 1L}.

2. (f, g) : [X,A] → [Y,B] is a morphism if
(a) f : X ⇝ Y is a L-fuzzy relation,
(b) g : |A|⇝ |B| is a L-fuzzy relation,
(c) The following inequality holds:

f♢A ≤ B♢g.

3. A composition of morphisms (f, g) : [X,A] → [Y,B] and (f1, g1) : [Y,B] →
[Z, C] is a morphism (f1♢f, g1♢g) : [X,A] → [Z, C].

4. The unit morphism 1[X,A] equals (ηX , η|A|).

By πA we denote a mapping X → |A| such that x ∈ core(A(πA(x)). As
follows from the following propositions, both these categories RSpace(L) and
RSet(L) define subcategories in the category Top.

Proposition 1. Let (X, δ) be an object of RSet(L) and let

L(X,δ) = {s ∈ LX : δ↑(s) ≤ s}.
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1. L(X,δ) is the strong Chang L-fuzzy topology of open L-fuzzy sets in the set
X. A L-fuzzy topological space (X,L(X,δ)) will be denoted by L(X, δ),

2. L(X,δ) = {¬s : s ∈ L(X,δ)} = {s ∈ LX : δ↓(s) ≥ s} is the set of closed
L-fuzzy sets in L(X, δ).

3. The full subcategory of Top with objects L(X, δ) will be denoted by Top(L).

For objects of the category RSpace(L) we obtain another subcategory.

Proposition 2. For an object [X,A] of the category RSpace(L) we set

L[X,A] = {s ∈ LX : ∀i ∈ |A|,∀x ∈ core(A(i)), ⇑A(s)(i) ≤ s(x)}.

1. L[X,A] is a strong Chang L-fuzzy topology of open L-fuzzy sets in the set X.
A L-fuzzy topological space (X,L[X,A]) will be denoted by L[X,A].

2. L[X,A] = {s ∈ LX : ∀i ∈ |A|,∀x ∈ core(A(i)), ⇓A(s)(i) ≥ s(x)} is the set
of closed L-fuzzy sets in L[X,A].

3. The full subcategory of Top with objects L[X,A] will be denoted by
Top(RSpace).

4 Topological groupoids in categories Top(L) and
Top(RSpace)

As we already mentioned in the Introduction, in order to be able to define the
extension of the groupoid (X,+) onto groupoids in these categories, we first
of all need to define some type of products of objects in these categories and
further compatible conditions allowing the binary operations + to be extended
to morphisms in these categories.

Due to the properties of L-fuzzy relations, it is not possible to prove the
existence of standardly defined products in categories (see, e.g., [9]) for any pair
of objects in these categories. For this purpose, we will introduce the concept
of L-fuzzy product in the category Top, which will allow us to introduce the
concept of binary operation as a morphism in this category.

We show that the concept of a fuzzy product can be introduced in any cate-
gory K, where the hom-sets HomK(a, b) of morphisms between two objects are
endowed with order relations, preserving the composition of the morphisms. The
fuzzy product represents a generalization of the product of objects in categories
(see [9]), where the notion of commutativity of the diagram is replaced by the
so-called fuzzy commutativity, and where instead of the existence of a unique
morphism satisfying the given property, we demand the existence of the largest
morphism with this property.

Definition 6. Let K be an ordered category, that is, for arbitrary objects x, y of
K, the hom-set HomK(x, y) of morphisms between x, y is ordered by a relation
≤ preserving the composition of the morphisms.
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1. We say that the following diagram of K-morphisms fuzzy commutes,

a b

c

g

h
f

if g.h ≤ f holds.
2. Let {xi : i ∈ I} be a set of objects of K. We say that x ∈ K with K-

morphisms qi : x → xi, i ∈ I, is a fuzzy product of xi, i ∈ I, if

(a) For arbitrary object y ∈ K and K-morphisms pi : y → xi, i ∈ I, there
exists a K-morphism w : y → x such that the diagram fuzzy commutes,

x xi

y

qi

w
pi

that is, qi.w ≤ pi.
(b) w is the largest K-morphism y → x such the above diagram fuzzy com-

mutes.

The following theorem is an essential prerequisite for defining groupoids in
categories of fuzzy objects.

Theorem 1. In categories

RSet(L), RSpace(L), Top, Top(L), Top(RSpace)

there exist fuzzy products of arbitrary sets of objects.

Using the concept of a fuzzy product in an ordered category, we can now
define the concept of a fuzzy groupoid in these categories. The advantage of the
concept of fuzzy goupoid defined in this way is that its definition is formally
analogous to the definition of a classical proupoid in sets.

Definition 7. Let K be an ordered category, and let x be an object of K. We
say that G = (x,⊕) is a fuzzy groupoid in the category K, if ⊕ : x× x → x is a
morphism in K, where x× x is a fuzzy product in K.

4.1 Fuzzy groupoids in category Top(L)

To extend a classical groupoid (X,+) onto a fuzzy groupoid in a categoryTop(L)
of L-fuzzy topological spaces L(X, δ) with continuous L-fuzzy relations, we first
need to define the notion of compatibility between the groupoid (X,+) and the
L-fuzzy approximation space (X, δ). This compatibility is a generalization of a
congruence relation.
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Definition 8. Let S = (X,+) be a groupoid, and let (X, δ) be an object of
RSet(L). We say that S is compatible with δ if for arbitrary x1, x2, x

′
1, x

′
2, y ∈ X

the following inequality holds:

δ(x1 + x2)(y)⊗ (δ(x1)(x
′
1) ∧ δ(x2)(x

′
2)) ≤ δ(x′

1 + x′
2)(y).

Using this compatibility condition we can extend a groupoid operation + onto
a morphism in the category RSet(L).

Proposition 3. Let (X, δ) be an object of RSet(L) and let S = (X,+) be a
groupoid compatible with δ. Then a L-fuzzy relation ⊕ : X ×X ⇝ X defined by

x = (x1, x2) ∈ X ×X, y ∈ X, ⊕(x)(y) = δ(x1 + x2)(y)

is a morphism ⊕ : (X, δ)×(X, δ) → (X, δ) in RSet(L) and ((X, δ),⊕) is a fuzzy
groupoid in RSet(L).

Using the compatibility of + and δ we can also obtain the following result.

Proposition 4. Let L(X, δ) be an object of Top(L) and let S = (X,+) be a
groupoid compatible with δ. Then a L-fuzzy relation ⊕ : X × X ⇝ X from
Proposition 8 is a morphism ⊕ : L(X, δ) × L(X, δ) → L(X, δ) in Top(L) and
(L(X, δ),⊕) is a fuzzy groupoid in Top(L).

4.2 Fuzzy groupoids in category Top(RSpace)

To extend a classical grouopid S = (X,+) onto a fuzzy groupoid in a category
Top(Space) of L-fuzzy topological spaces L[X,A] with continuous L-fuzzy re-
lations, analogously as in the previous subsection, we need first to define the
notion of compatibility between a groupoid (X,+) and L-fuzzy partition space
[X,A].

We need the following lemma.

Lemma 2. Let [X,A] be an object of category RSpace(L) and let S = (S,+)
be a groupoid in the category of sets with mappings. Let, for arbitrary x,x′ ∈
X ×X, y ∈ Y , + satisfy the following inequality,

ρA(x1 + x2)(y)⊗ (ρA(x1)(x
′
1) ∧ ρA(x2)(x

′
2)) ≤ ρA(x

′
1 + sx′

2)(y),

where

ρA(x, x
′) =

{
1L, ∃i ∈ |A|, x, x′ ∈ core(A(i)),

0L, otherwise.

Then in the set |A| the binary operation ⊞ can be defined by

i1, i2 ∈ |A|, i1 ⊞ i2 = πA(x1 + x2), where πA(x1) = i1, πA(x2) = i1.

Using the operation ⊞ and the L-fuzzy relation ρA we can define the notion
of compatibility of an operation + and L-fuzzy partition A.



Title Suppressed Due to Excessive Length 9

Definition 9. Let [X,A] be an object of the category RSpace(L) and let S =
(S,+) be a groupoid in the category of sets. We say that S is compatible with a
L-fuzzy partition A if for arbitrary x,x′, z ∈ X×X, y ∈ Y, i ∈ |A|2 the following
inequalities hold:

ρA(x1 + x2)(y)⊗ (ρA(x1)(x
′
1) ∧ ρA(x2)(x

′
2)) ≤ ρA(x

′
1 + x′

2)(y), (1)

A(i1)(z1) ∧ A(i2)(z2) ≤ A(i1 ⊞ i2)(z1 + z2). (2)

Using this compatibility, we extend the binary operation + from a groupoid
S to a morphism (⊕,⊞) : [X,A] × [X,A] → [X,A] in category RSpace(L),
where × is a fuzzy product in this category.

Proposition 5. Let [X,A] be an object in RSpace(L) and let S = (X,+) be
a groupoid compatible with a fuzzy partition A. Let ⊕ and ⊞ be (crisp) L-fuzzy
relations

⊕ : X ×X ⇝ X, ⊞ : |A| × |A|⇝ |A|,

for i = (i1, i2) ∈ |A| × |A|, j ∈ |A|,x ∈ X ×X defined by

⊞(i)(j) =

{
1L, j = i1 ⊞ i2,

0L, otherwise
,

⊕(x)(y) :=

{
1L, y = x1 + x2,

0L, otherwise
.

Then (⊕,⊞) : [X,A] × [X,A] → [X,A] is a morphism in category RSpace(L)
and ([X,A], (⊕,⊞)) is a fuzzy groupoid in the category RSpace(L).

The consequence of this proposition is the following proposition, showing
that a standard groupoid (X,+) compatible with a fuzzy partition A can be
extended to a fuzzy groupoid in the category Top(RSpace).

Proposition 6. Let [X,A] be an object in RSpace(L) and let S = (X,+) be
a groupoid compatible with a fuzzy partition A. Then ⊕ : L[X,A] × L[X,A] →
L[X,A] is a morphism in Top(RSpace) and (L[X,A],⊕) is a groupoid in cate-
gory Top(RSpace).

5 Conclusions

The purpose of the paper was to define the notion of a continuous L-fuzzy re-
lation between arbitrary Chang L-fuzzy topological spaces, which can also be
defined in categories other than the category Set of sets with mappings. As an
example of such categories, in the paper we chose the category of fuzzy approx-
imation spaces RSet(L) with relational L-fuzzy morphisms and the category of
spaces with fuzzy partitions RSpace(L) with L-fuzzy relational morphisms. To
illustrate the possibilities of Chang L-fuzzy topological spaces with continuous
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L-fuzzy relations, we have shown how the classic groupoids in sets can be ex-
tended to groupoids in objects of these categories in such a way that groupoid
operations are morphisms in these categories.

The paper represents the first introduction to the issue of continuous L-fuzzy
relations defined in various categories with fuzzy objects of other categories. This
concept allows, among other things, to define continuous algebraic operations as
continuous L-fuzzy relations and to investigate the properties of these relational
operations.

References

1. Chang, C.: Fuzzy topological spaces. Journal of Mathematical Analysis Application
24, 182–190 (1968)

2. Cignoli, R.L., d’Ottaviano, I.M., Mundici, D.: Algebraic foundations of many-
valued reasoning, vol. 7. Springer Science & Business Media (2013)

3. Demirci, M., Recasens, J.: Fuzzy groups, fuzzy functions and fuzzy equivalence
relations. Fuzzy Sets and System 144, 441–458 (2004)

4. Di Lascio, L., Gisolfi, A., Rosa, G.: A commutative l-monoid for classification
with fuzzy attributes. International Journal of Approximate Reasoning 26(1), 1–
46 (2001)

5. Gerla, G.: Fuzzy submonoids, fuzzy preorders and quasi-metrics. Fuzzy Sets and
Systems 157(17), 2356–2370 (2006)

6. Gerla, G., Scarpati, M.: Similarities, fuzzy groups: a galois connection. J. Math.
Anal. Appl. 292, 33–48 (2004)
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