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Abstract. The classical Efron’s bootstrap is a widely used tool in sta-
tistical inference. However, because of its disadvantages, many other re-
sampling algorithms were proposed in the literature, especially for the
real-valued data. In this paper, we consider three resampling methods
for the special case of the interval real-valued data. They were inspired
by the smoothed bootstrap and special algorithms known for fuzzy num-
bers. Using numerical simulations and statistical tools, the introduced
methods are compared with the Efron’s bootstrap. It seems that these
new algorithms produce samples that can be considered as “similar, but
not exactly the same” as the initial data, which is an important aim in
the case of resampling methods.

Keywords: Statistical simulations · Smoothed bootstrap · Non-parametric
model · Bootstrap · Imprecise data.

1 Introduction

The classical Efron’s bootstrap [6] is a very powerful tool in statistical infer-
ence [4]. However, due to its important shortcomings (like the repetitions of the
same values especially seen for small samples), many other resampling algorithms
were developed, like the smoothed bootstrap [22], wild bootstrap [3], etc. They
are widely used in, e.g., estimation procedures, hypotheses testing, construction
of confidence intervals, and regression analysis.

The resampling methods were also applied “outside the world of real numbers”
and proved to be useful statistical techniques also in the case of fuzzy numbers
[8–11, 13, 17, 19].

Inspired by the above-mentioned approaches, especially the smoothed boot-
strap, d-method [19], and s-method [20], we propose three different resampling
methods for the special case of the interval random numbers. Such a kind of
statistical data is closely related to the imprecise information [15] and requires
a special treatment taking into account its interval structure. To achieve greater
flexibility and omit the unnecessary assumptions about the initial sample, we
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focus on non- or semi-parametric algorithms based on increases of the inter-
vals, non-informative distribution (the uniform distribution in this case), and
the Gaussian kernel density estimators. Moreover, these introduced methods ex-
ploit the inner structure of the data, i.e. information about the ends of their
intervals. Due to this, these approaches can be directly extended, e.g., for the
triangular and trapezoidal fuzzy numbers which can be seen as a kind of unions
of “points” or “intervals” (the cores of the triangular or trapezoidal fuzzy num-
bers, respectively), and additional “intervals” (given by the respective supports
of these fuzzy numbers).

The proposed approaches were also numerically compared with the classical
Efron’s bootstrap directly adapted to the interval real numbers. During our anal-
ysis, the synthetic initial samples were simulated from various probability dis-
tributions. Then, both the statistical graphs and tests (including the goodness-
of-fit and variance tests) were applied. It seems that these new resampling algo-
rithms (especially the third one) lead to interesting results. The variability of the
secondary (i.e. bootstrapped) samples was increased when compared with the
outputs for the Efron’s bootstrap. This is an important advantage. Moreover,
the goodness-of-fit tests did not reject the hypotheses concerning agreement be-
tween the distributions of the initial and secondary samples regarding the ends
and middles of the intervals. Therefore, we obtain the new samples that are
“very similar, but not the same as initial values” – an important goal of other
resampling approaches [11, 20].

The paper is organized as follows. In Sect. 2, the necessary notation is intro-
duced, and some basic facts about the resampling methods are recalled. The new
resampling algorithms for the interval numbers are described in Sect. 3. Their
exhaustive numerical analysis is conducted in Sect. 4. Then, some final remarks
are presented in Sect. 5.

2 Preliminaries

Let us start with the following definition:

Definition 1. Let XL and XR be two random real-valued variables defined on
the same sample space Ω such that XL(ω) ≤ XR(ω) for all ω ∈ Ω. Then
X =

[
XL, XR

]
is called a random interval. A random sample X = (X1, . . . ,Xn)

consists of n iid random intervals.

Now we recall some basic facts concerning the resampling methods considered
further on. Let x = (x1, . . . , xn) be a realization of a real-valued random sam-
ple of size n (so-called the initial sample). The Efron’s bootstrap [6] generates
the bootstrapped (secondary) sample y = (y1, . . . , ym) using the values from x

with repetitions and constant probabilities 1
n , where usually m = n. The whole

procedure can be repeated B times, so we get yi =
(
yi1, . . . , y

i
m

)
for i = 1, . . . , B.

In the case of the smoothed bootstrap [22], the values in the bootstrapped
sample y are also drawn from the initial sample x, but then the random noise
generated from some kernel density estimator is added to each of them. This
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procedure leads to greater variability of the outputs which may be helpful es-
pecially when the initial data were modeled with some continuous probability
distribution. Many different kernel densities were proposed in the literature, e.g.,
the Gaussian one [1].

The d-method [19] is a resampling approach for fuzzy numbers, especially
useful for the triangular or trapezoidal ones (see, e.g., [2]). During its first step,
the initial sample of fuzzy numbers is decomposed into four auxiliary sets, con-
sisting of the left ends of cores of these fuzzy values, the width of their cores,
left and right increases of their supports. Then, the secondary sample is created
using these special sets. Each output fuzzy number is built from the randomly
drawn (with repetitions and the constant probabilities) elements from the aux-
iliary sets, starting with its core and ending with its support.

This approach was extended for the interval fuzzy numbers in [20], where
another algorithm, known as the s-method, was also proposed. Because of spe-
cial features of the interval fuzzy numbers (see, e.g., [5]), the initial sample in
the s-method is decomposed into auxiliary sets consisting of pairs related to
the respective lower and upper fuzzy numbers. Then, during the building of a
new value for the bootstrapped sample, two-dimensional variables from specially
tailored normal densities are added to the left ends of the cores, their widths,
etc. The underlying idea for this procedure is closely related to the smoothed
bootstrap.

3 New resampling approaches

Let x = (x1, . . . ,xn) be a realization of a primary sample of real-valued in-
terval numbers xi =

[
xL
i , x

R
i

]
, where i = 1, . . . , n. In this section, we discuss

three resampling methods to create a bootstrapped (i.e., secondary) sample
y = (y1, . . . ,ym), where yi =

[
yLi , y

R
i

]
for i = 1, . . . ,m.

There are two steps in method 1, which is closely related to the d -method
[19, 20] (see also Sect. 2). During the initialization step, two auxiliary sets L and
R are created (see Algorithm 1). The first one consists of the left ends of the
intervals from x, namely L =

{
xL
1 , . . . , x

L
n

}
, and the second one contains the

respective lengths of these intervals, so R =
{
xR
1 − xL

1 , . . . , x
R
n − xL

n

}
.

Algorithm 1 Method 1 – Initialization step
Require: The initial sample x = (x1, . . . ,xn)
Ensure: The auxiliary sets L and R
1: for i = 1, . . . , n do
2: Append xL

i to L
3: Append xR

i − xL
i to R

4: return L,R

Then, for each i = 1, . . . ,m, a new interval value yi is created (see Algo-
rithm 2). Its left end yLi is randomly drawn from L, and the respective length
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di is generated using R. In both cases, repetitions are possible and the constant
probability 1

n is applied. The right end yRi of the new interval is calculated as a
sum of its left end and length, namely yRi = yLi + di .

Algorithm 2 Method 1 – Resampling step
Require: The sets L,R
Ensure: The secondary sample y = (y1, . . . ,ym)
1: for i = 1, . . . ,m do
2: Randomly draw yL

i from L
3: Randomly draw di from R
4: yR

i ← yL
i + di

5: yi ←
[
yL
i , y

R
i

]
6: return y

When the smoothed approach (as in the case of the s-method [20], see also
Sect. 2) is applied to the method 1, we obtain a more complex method 2. Its
first, initialization step is the same as in the previous case (see Algorithm 1).
During the second step, the Gaussian kernel density estimator f̂L is calculated
based on the set L (see also [21, 22]), e.g., using the function density in R (see
Algorithm 3). Next, the respective left end yLi of the new interval yi is randomly
drawn from this density f̂L, and the length di is generated similarly as in the
method 1, i.e., using R and the discrete probabilities 1

n . As previously, the right
end yRi is obtained as the sum yLi + di.

Algorithm 3 Method 2 – Resampling step
Require: The sets L,R
Ensure: The secondary sample y = (y1, . . . ,ym)
1: Calculate the Gaussian kernel density estimator f̂L using L
2: for i = 1, . . . ,m do
3: Randomly draw yL

i from f̂L
4: Randomly draw di from R
5: yR

i ← yL
i + di

6: yi ←
[
yL
i , y

R
i

]
7: return y

The method 2 may be criticized as being more parametric in its form, because
of using the Gaussian kernel during the second step. Of course, other types of
kernels can be applied, instead of the Gaussian one. However, we propose another
approach aimed to be a more non-parametric one – the method 3.

Once again, the first step of the method 3 is run as previously (see Algo-
rithm 1). Next, two Gaussian kernel density estimators are calculated, f̂L using
L, and f̂R with R, respectively (see Algorithm 4). Then, for each i = 1, . . . ,m,
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a single interval x∗ =
[
xL
∗ , x

R
∗
]

is randomly drawn from the initial sample x as
in the classical bootstrap. The values from this interval are treated as quantiles
to calculate their orders, p̂L for the left end xL

∗ using the cdf (cumulative dis-
tribution function) Ff̂L

related to f̂L, and p̂L for the right end xR
∗ with the cdf

Ff̂R
based on f̂R, respectively.

To give us an additional level of “variability” for the output, the obtained
orders of the quantiles are expanded to two intervals [p̂L − rq, p̂L + rq] and
[p̂R − rq, p̂R + rq] for some rq > 0. Afterward, these two intervals are trans-
formed back to intervals of the quantiles using the respective inversions of the
cdfs F−1

f̂L
and F−1

f̂R
with the formulas

qL =
[
max

(
0, F−1

f̂L
(p̂L − rq)

)
,min

(
1, F−1

f̂L
(p̂L + rq)

)]
, (1)

qR =
[
max

(
0, F−1

f̂R
(p̂R − rq)

)
,min

(
1, F−1

f̂R
(p̂R + rq)

)]
. (2)

In this way, we can draw both ends yLi , yRi of the new output interval yi from the
uniform distributions on qL (denoted further on by U [qL], so yLi ∼ U [qL]) and
qR (i.e. yRi ∼ U [qR]), respectively. Using the non-informative distribution (i.e.
the uniform density in this case) leads to a more non-parametric approach than
for the method 2. Moreover, the extension parameter rq gives us the possibility
to control the “variability” of the output, if it should be smaller (for the low
values of rq) or bigger (otherwise).

The ends of the output interval obtained in this way should fulfill the obvious
condition yLi ≤ yRi . In the contrary case, they have to be generated once again.

Algorithm 4 Method 3 – Resampling step
Require: The sets L,R
Ensure: The secondary sample y = (y1, . . . ,ym)
1: Calculate the Gaussian kernel density estimators f̂L for L, and f̂R for R
2: for i = 1, . . . ,m do
3: Randomly draw x∗ =

[
xL
∗ , x

R
∗
]

from x

4: p̂L ← Ff̂L

(
xL
∗
)

5: qL ←
[
max

(
0, F−1

f̂L
(p̂L − rq)

)
,min

(
1, F−1

f̂L
(p̂L + rq)

)]
6: p̂R ← Ff̂R

(
xR
∗
)

7: qR ←
[
max

(
0, F−1

f̂R
(p̂R − rq)

)
,min

(
1, F−1

f̂R
(p̂R + rq)

)]
8: repeat
9: Randomly draw yL

i from U [qL]
10: Randomly draw yR

i from U [qR]
11: until yL

i ≤ yR
i

12: yi ←
[
yL
i , y

R
i

]
13: return y
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4 Numerical analysis

We compared the three resampling methods proposed in Sect. 3 with their classi-
cal counterpart – the Efron’s bootstrap directly adapted to the interval numbers
(when each whole interval

[
xL, xR

]
is randomly drawn from the initial sam-

ple x with the probability 1
n and possible repetitions). In our analysis, synthetic

samples consisting of interval real-valued numbers generated from different prob-
ability distributions were created. To obtain the initial sample x = (x1, . . . ,xn),
realizations of two independent random variables were necessary. The first vari-
able XL was used for the left ends of x, i.e., xL =

(
xL
1 , . . . , x

L
n

)
, and the second

one XR – for their right-hand side counterparts xR =
(
xR
1 , . . . , x

R
n

)
(see, e.g.,

[11, 18, 19] for similar approaches). Their distributions are summarized in Ta-
ble 1, where U(a, b) stands for the uniform distribution on the interval [a, b],
N(µ, σ) denotes the normal distribution with the expected value µ and stan-
dard deviation σ, Γ (α, β) – the gamma distribution with the shape parameter
α and scale parameter β. It should be noted that the probability distribution
for the right ends of Γ/NN is the most interesting one, as a composition of two
normal distributions with rather distant modes.

Table 1. Probability distributions of the types of synthetic samples.

Type Left end Right end
U/U1 U(0, 100) U(0, 100)
U/U2 U(0, 1) U(0, 1)
N/U1 N(0.24, 0.5) U(0, 0.25)
N/U2 N(1, 1) U(0, 1)
Γ/Γ 1 Γ (0.08, 2.5) Γ (0.08, 2.5)
Γ/Γ 2 Γ (0.5, 2.5) Γ (0.5, 2.5)
Γ/NN Γ (2, 1) 1

2
N(5, 2) + 1

2
N(20, 3)

To shorten the length of this paper, only some of the obtained numerical
results are presented in the following. Others are available upon request.

4.1 Convergence to the means

We started from analysis of the convergence of the means ȳL(m), ȳR(m) for the
left and right ends, respectively, together with the middles ¯̇y(m) of the intervals
for the bootstrapped sample y = (y1, . . . ,ym) as the function of its size m, to
their counterparts x̄L, x̄R, ¯̇x based on the initial sample x, where

ȳL(m) =
1

m

m∑
i=1

yLi , ȳR(m) =
1

m

m∑
i=1

yRi ¯̇y(m) =
1

m

m∑
i=1

yLi + yRi
2

(3)

x̄L =
1

n

n∑
i=1

xL
i , x̄R =

1

n

n∑
i=1

xR
i

¯̇x =
1

n

n∑
i=1

xL
i + xR

i

2
. (4)
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In our experiments, the rather small samples U/U1, N/U1, Γ/Γ 1, Γ/NN with
n = 20 elements were considered. For some exemplary results, see Figs. 1–2.
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Fig. 1. Convergence of the means for the left ends of the intervals for Γ/Γ 1.

The resampling means converged to their counterparts related to the initial
sample in all cases. It seems that the variability for the method 2 was rather big
during the initial steps, but then its trajectory stabilized. The method 3 had the
fastest convergence speed and rather stable trajectory. However, in the case of
Γ/Γ 1, it led to values of the means that are bigger than for other methods.

4.2 Behavior of the ends of intervals

We also compared the plots of the sorted values for the left and right ends of
the intervals. To do this, the initial samples consisting of n = 20 elements of
the same types as in Sect. 4.1 were generated. Then, after their resampling, the
outputs for the secondary samples (with m = 100) were sorted and compared
with the initial values. Some exemplary results can be found in Fig. 3, where the
horizontal axes are related to the indexes of observations, and the vertical axes
– to their sorted values.

The method 1 gave outputs that are very similar to the classical bootstrap –
it directly follows from its construction. Both the method 2 and method 3 repro-
duced exactly the initial sample, even with some of its discontinuities. Moreover,
this last approach resulted in an almost linear approximation of some “missing
values” that can be observed in the initial sample (compare Figs. 3a and 3d).
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Fig. 2. Convergence of the means for the left ends of the intervals for Γ/NN.

4.3 Statistical tests

Next, the resampling methods were compared with the help of statistical tests.
For each initial sample of the size n = 20, the new secondary sample with m =
100 elements was created, and then various tests were conducted. To minimize
the randomness of their outputs, each experiment was repeated l = 100 times,
and the obtained p-values were averaged then (see also, e.g., [11, 12] for the
similar approaches).

Firstly, the two-sample goodness-of-fit Kolmogorov-Smirnov test (abbrevi-
ated further as the KS test [16]) and Mann-Whitney U test (denoted by the U
test [14]) were applied. We checked if the probability distributions of the left ends
of the intervals for the initial sample xL and secondary one yL =

(
yL1 , . . . , y

L
m

)
can be considered as the same, just as the probability distributions of the right
ends for the initial sample xR and its resampled counterpart yR =

(
yL1 , . . . , y

R
m

)
,

and the middles of the intervals ẋ = (ẋ1, . . . , ẋn) versus ẏ = (ẏ1, . . . , ẏm), re-
spectively. Exemplary results for the estimated p-values of the KS test are given
in Table 2.

For all of these considered cases, the null hypotheses about the same dis-
tributions were not rejected, even for high significance levels like 0.45. But it
seems that the method 3 (together with the classical bootstrap, which is rather
unsurprising) gave the highest p-values. This is especially seen in the KS test.

Then, we compared the variances of the left ends of the intervals for the
initial and secondary samples, and also the variances of their right counterparts,
with the help of the Levene’s test (e.g., [7]). The obtained averaged p-values are
given in Table 3. The null hypotheses about the equality of the variances could
not be rejected for the classical significance level of 0.05. However, the proposed
resampling methods led to the relatively high p-values, even about 0.7–0.8. On
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(a) Initial sample

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Index

V
al

ue

(b) Bootstrap
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(c) Method 2
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(d) Method 3

Fig. 3. Sorted values for Γ/Γ 1.

the contrary, the classical bootstrap behaved in a very unstable manner, and for
N/U2 and Γ/Γ 2 the obtained p-values were much closer to 0.15.

5 Conclusion

In this paper, we presented three different resampling methods for the interval
real-valued numbers. They were inspired by the smoothed bootstrap (developed
for real numbers), together with the d- and s-methods (introduced for fuzzy num-
bers). After conducting numerical comparisons based on simulations, it seems
that especially the third method leads to interesting results. We achieved greater
variability than for the Efron’s bootstrap without the rejection of the null hy-
pothesis in the goodness-of-fit tests. Therefore, the obtained secondary samples
can be seen as “similar, but not the same” when compared with the initial data.

We are aware of the fact that for the interval-valued random numbers, the
most important is the joint distribution of the two ends of these intervals. How-
ever, in the case of the method 1 and method 2, we consider a simpler resampling
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Table 2. Averaged p-values for the KS test

Type U/U2 N/U2 Γ/Γ 2 Γ/NN
Left ends

Bootstrap 0.98273 0.97170 0.97571 0.97208
Method 1 0.57936 0.86509 0.79504 0.69609
Method 2 0.49309 0.84862 0.74592 0.66200
Method 3 0.92678 0.91202 0.80107 0.87577

Right ends
Bootstrap 0.98273 0.97170 0.97571 0.97208
Method 1 0.57936 0.86509 0.79504 0.69609
Method 2 0.49309 0.84862 0.74592 0.66200
Method 3 0.92678 0.91202 0.80107 0.87577

Middles
Bootstrap 0.98273 0.97170 0.97571 0.97208
Method 1 0.57936 0.86509 0.79504 0.69609
Method 2 0.49309 0.84862 0.74592 0.66200
Method 3 0.92678 0.91202 0.80107 0.87577

Table 3. Averaged p-values for the Levene’s test

Type U/U2 N/U2 Γ/Γ 2 Γ/NN
Left ends

Bootstrap 0.73318 0.75163 0.65573 0.74148
Method 1 0.74165 0.72858 0.63140 0.76282
Method 2 0.74268 0.79654 0.68247 0.72330
Method 3 0.75259 0.75990 0.63444 0.74392

Right ends
Bootstrap 0.79805 0.17125 0.13193 0.80441
Method 1 0.80816 0.71755 0.63669 0.78242
Method 2 0.82147 0.72449 0.78333 0.73931
Method 3 0.80648 0.78606 0.73810 0.81620

approach when the left end of the interval and its respective diameter are gen-
erated independently. Such an idea is similar to the one represented by the
d-method for fuzzy numbers and leads to greater numerical efficiency of these
algorithms. Nevertheless, in the case of the method 3, some properties of the
joint distribution are taken into account with the additional level of “variability”
of the obtained results due to using non-informative uniform distributions for
both ends of the resampled intervals.

Of course, there are still other ideas that can be used to develop new resam-
pling methods, e.g., the correlation coefficient between the ends of the intervals
can be useful in further exploiting the inner structure of the interval data [20].
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