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Abstract. The DE-MCZ algorithm is an improvement of the DE-MC
method, which joins the differential evolution with the theory of the
Markov chains. It aims to ensure the numerical effectiveness and the
convergence speed of the special variant of the Metropolis-Hastings algo-
rithm with the help of an additional, self-adapting initial matrix. In this
paper, we add the modes detection procedures to the DE-MCZ algorithm
to increase its abilities in sampling from multimodal target densities. As
our numerical experiments suggest, the obtained DE-MCmodes algorithm
provides results that give a better fit to the desired target density than
the classical approaches.

Keywords: Statistical simulations · Markov chain · Mode detection ·
Unsupervised learning · Non-parametric model.

1 Introduction

Among other simulation methods, the Monte Carlo (MC) and Markov Chain
Monte Carlo (MCMC) algorithms should be mentioned as widely used in both
statistics and real-life applications (e.g., [11]). But the generation of random
variables from various probability distributions is also important in statistical
inference based on fuzzy numbers (e.g., [4–6, 10, 12–15]). If we aim to generate
a sample from the complex, multidimensional distribution, then the Metropolis-
Hastings (abbreviated further as MH) algorithm can be used. Then, the normal
distribution is usually applied as a so-called instrumental density for this method.
However, some parameters of this kind of distribution (especially its covariance
matrix) affect the numerical effectiveness and convergence speed of the MH
algorithm.

To overcome this problem, the special approach, known as the DE-MC, was
proposed in [2]. The DE-MC method joins the differential evolution (DE) ap-
proach with the theory of the Markov chains (MC) and significantly improves
the quality of simulations for the MH method. Then, various modifications of
the DE-MC algorithm were also introduced (e.g., [1, 16, 18, 19]).
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In this paper, we consider an extension of one of such modifications, namely
the DE-MCZ method [1]. The proposed DE-MCmodes algorithm combines the
DE-MCZ approach with a tool discovering an important characteristic of the
probability distributions: their possible modes.

The multimodal densities pose significant problems in statistical inference
(e.g., [7]) because they can affect our conclusions if only the single mode (instead
of more of the existing ones) is properly identified, especially in the case of the
simulated samples. Therefore, we continue the idea from [16] to seek the “unusual
phenomena” for the considered target probability distribution that could lead to
erroneous numerical outputs or unnecessarily long simulations. But, instead of
combining the classical DE-MC algorithm with the identification of the outliers,
its newer modification DE-MCmodes is applied together with the modes detection.

We aim to keep the proposed algorithm as straightforward, intuitively ap-
pealing, and numerically effective as this is possible, together with preserving
the non-parametric assumption and improving the quality of the simulated re-
sults. To achieve this, the two-phase approach was proposed. Firstly, the possible
modes are identified and stored in the special matrix. Then, this matrix is used
to initialize simulations in the second phase. Therefore, our approach “knows
more, better, and sooner” about the possible multimodality of the target distri-
bution than its standard counterpart. To check its efficiency, the DE-MCmodes
algorithm was numerically compared with the DE-MC and DE-MCZ approaches.
It seems that the proposed method improves the quality of the obtained final
sample and/or leads to a decrease in the number of necessary iterations.

The paper is organized as follows. In Sect. 2, some basic facts concerning
the DE-MC and DE-MCZ algorithms are recalled. The proposed modifications
for the DE-MCmodes algorithm are described in Sect. 3.1, together with the
numerical analysis of the conducted comparisons in Sect. 3.2. Then, some final
remarks are presented in Sect. 4.

2 Standard DE-MCZ Algorithm

The Markov Chain Monte Carlo (MCMC) methods are widely applied to gener-
ate a statistical sample from some complex target density f(x) with the help of
other, simpler density [11]. But a proper selection of this second density (known
as the instrumental one) can pose important problems, related to, e.g. the ap-
propriate form of its covariance matrix if the multivariate normal distribution is
used.

A method to overcome this problem was proposed in [2], as the Differen-
tial Evolution Markov Chain (DE-MC) algorithm. It joins the differential
evolution (DE) approach (e.g., [8, 9]) with the Markov chain (MC) theory. In
this method, N chains are simulated in parallel, and a state of the i-th chain
is given by a d-dimensional vector xi. Then, these vectors are members of a
population X and rows of an N × d matrix, where N > d.

Firstly, the primary population is independently drawn from some initial
d-dimensional distribution. Then, a new state x∗

i of each chain is sequentially
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updated using
x∗
i = xi + γ(xr1 − xr2) + ϵ, (1)

where ϵ is generated from a symmetric distribution with small variance and
unbounded support, γ > 0 is a tuning parameter, and xr1 ,xr2 are randomly
selected from X devoid of xi. With (1), the Markov chain that reaches the
whole state space is constructed (contrary to the classical DE scheme [2]). If
N(0, b·1d), i.e., the d-dimensional normal distribution with zeros for the expected
value and variance b, is used to generate ϵ, then b > 0 is usually some small value
compared with that of the target distribution [1] to ensure necessary properties
of the respective MC (see also [11]). Next, x∗

i is accepted as a new state with
the probability

p(xi,x
∗
i ) =

{
min

{
f(x∗

i )
f(xi)

, 1
}

if f(xi) > 0

1 if f(xi) = 0
(2)

or the i-th chain remains in its previous state xi, where f(x) is our target density
for the stationary probability distribution in this MCMC scheme (see also [11]).

To overcome the necessary assumption N > d, a modified version of the
DE-MC algorithm was proposed in [1]. In this method, known as the DE-MCZ
algorithm, the special matrix Z contains the current and past states of the chains,
and X stores the values of the current population. The matrix Z is initialized
with a sample of size M0 of d-dimensional starting vectors, and then sequentially
updated after each K (known as the thinning rate) repetitions of the main loop
(i.e., the generations of the matrix X) with vectors from X. Instead of proposing
new values from X as in (1), all values from the matrix Z are used, respectively
(see Algorithm 1).

The user-defined stop condition for the above-described procedure (line 4
in Algorithm 1) can be related to the pre-specified number of all steps, some
convergence measure for the obtained mean or other statistic of the output like
the R̂ Gelman-Rubin statistic.

3 Modified DE-MCmodes Algorithm

Continuing the idea from [16], we improved the DE-MCZ algorithm with the
modes detection and selection steps to obtain its new variant – the DE-MCmodes
method (see Sect. 3.1). This modified approach was numerically compared with
the classical DE-MC and DE-MCZ algorithms. The examples of these simulations
are described in Sect. 3.2. Other results are available upon request.

3.1 Introduced Modifications

The proposed DE-MCmodes method consists of two main steps (see Algorithm 2):

1. During the first phase, the specially modified version of the DE-MCZ ap-
proach starting from the matrix Z∗ with the generated initial population
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Algorithm 1 DE-MCZ standard algorithm [1]
Require: Parameters of the algorithm: initial population, M0, N,K, b, d, γ, f(x)
Ensure: The matrix Z with the current and past states of the chain
1: Generate M0 members of the initial population and store them in the matrix Z
2: Copy N first vectors of Z to X
3: M ←M0, j ← 0
4: while stop condition is not fulfilled do
5: for k = 1, 2, . . . ,K do
6: j ← j + 1
7: for i = 1, 2, . . . , N do
8: Take the i-th row xi from X
9: Select randomly zr1 ,zr2 from Z other than xi

10: Generate ϵ ∼ N(0, b · 1d)
11: x∗

i = xi + γ(zr1 − zr2) + ϵ

12: Set xi =

{
x∗

i with probability p(xi,x
∗
i )

xi with probability 1− p(xi,x
∗
i )

13: Append X to Z, M ←M +N

14: return Z

tries to identify the modes (defined as local maxima of f(x)) and append
them to the auxiliary matrix V . These procedures are applied every Kmodes-
th step to increase the numerical effectiveness of the algorithm and ensure
its convergence properties.

2. In the second phase, the new DE-MCZ algorithm is started using V as its
initial matrix Z (see Algorithm 1). As its stop condition, the R̂ Gelman-
Rubin statistic (e.g., [3, 16, 17]) is used with the threshold R close to one (as
indicated in the literature). When the estimated value of R̂ is lower than the
selected R, the final output is returned.

The main aim of these modifications is to improve the effectiveness and quality
of the generated samples in the case of complex target densities, especially the
multimodal ones. Additionally, the value of γ in (1) is dynamically changed to
easily reach the possible modes, especially if they are far from each other.

Contrary to the standard DE-MCZ approach, the generated initial population
is stored in the matrix Z∗, which also contains the previous and current states
of the preliminary phase (steps 1–15 in Algorithm 2). Then, the detection of the
modes is done after each Kmodes repetition of the main loop related to updating
the matrix X (steps 7–14 in Algorithm 2), where X consists of the current
values of the whole population. To find the possible modes, observations are
compared with their kmodes neighbors. Their distances are calculated according
to the Euclidean metric. Then, these vectors with their 2nmodes closest (in the
same metric) neighbors are added to V (step 16 in Algorithm 2). To avoid the
possibility that the neighbors selected in this way are too far from the considered
mode, a special threshold was introduced. Its value is related to the standard
deviation of f(x) for all vectors in the current population. Next, the matrix V is
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Algorithm 2 DE-MCmodes modified algorithm
Require: Parameters of the algorithm: initial population, M0, N,N∗,K,K∗,Kmodes,

L, b, d, γ, f(x), nmodes, kmodes

Ensure: The matrix Z with the current and past states of the chain
1: Generate M0 members of the initial population and store them in the matrix Z∗

2: Copy N∗ first vectors of Z∗ to X
3: M∗ ←M0, j ← 0
4: for l = 1, 2, . . . , L do
5: for k = 1, 2, . . . ,K∗ do
6: j ← j + 1
7: for i = 1, 2, . . . , N∗ do
8: Take the i-th row xi from X
9: Select randomly z∗

r1 ,z
∗
r2 from Z∗ other than xi

10: Generate ϵ ∼ N(0, b · 1d)
11: x∗

i = xi + γ(z∗
r1 − z∗

r2) + ϵ

12: Set xi =

{
x∗

i with probability p(xi,x
∗
i )

xi with probability 1− p(xi,x
∗
i )

13: Append X to Z∗, M∗ ←M∗ +N∗

14: if j is divisible by Kmodes then
15: Find the modes in X and append them to V
16: Z ← V
17: Copy N last vectors of Z to X
18: Apply steps 3–14 of Algorithm 1

used as the initial population for the second phase of this approach. The aim is
to “populate” the main part of the algorithm with starting points that are close
to possible modes. Please note, that because of the random and approximate
nature of the above-described procedure, we can not precisely state the size of
the respective sample stored in V (i.e. if there is only one vector or more there,
see, e.g., Fig. 3e). But even one vector can be important as “almost the best”
starting point. If necessary, one can add more vectors to V originated from, e.g.,
Z∗ or even X.

To faster reach the possible modes, the parameter γ is changed every certain
number of steps and then restored to its primary value. This modification allows
for “jumping” between the modes (especially if they are far from each other) but
preserves the convergence properties of the Markov chain.

3.2 Numerical Analysis

The proposed algorithm was numerically compared with its classical counter-
parts, the DE-MC and DE-MCZ methods, using procedures written in R. In
this section, we present results concerning different target multimodal densities.
Other examples and graphs are available upon request.

In the first example, f(x) was a mixture of two normal densities with modes
that are rather distant from each other, namely

1/6 ·N(−8, 1) + 5/6 ·N(38, 1), (3)
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where N(µ, σ) stands for the normal distribution with the mean µ and standard
deviation σ. The algorithms were started with the initial population generated
from N(15, 2) and parameters N∗ = N = 20,M0 = 25,K∗ = 5,K = 10, γ =
2.38/

√
2, R = 1.1, L = 200, nmodes = 2, kmodes = 4, b = 0.01. The values of these

parameters were chosen with the thumb rule based on the previous experiments
[16] or obtained directly from the literature (e.g., such a value of γ is considered
in [2] as a sensible choice motivated by comparison with the RWNM – random
walk with a normal jumping distribution) to ensure some balance between the
numerical effectiveness of the algorithm and quality of the output. It seems that
the results are not very sensitive to values of these parameters coming from a
reasonable range but additional experiments are still necessary.

The scaling parameter was changed to γ = 1 every 20 iterations of the
algorithm to help reach the distant local maxima of (3), the possible modes
were compared with their four neighbors, and the found modes with these 4
neighboring vectors were added to V .

The DE-MC approach converged after j = 1449 iterations, the DE-MCZ
needed even more steps j = 2299, and DE-MCmodes required only 1399 itera-
tions. Moreover, the estimated density for the last iteration of the DE-MCmodes
algorithm was clearly closer to the target function (see Fig. 1c) than in the case
of the DE-MC (see Fig. 1a) and DE-MCZ (see Fig. 1b) methods, especially for
the left-hand side mode. In these graphs, the estimated density is denoted by the
thin, blue line, and the target function – by the thick, purple one. The estimated
means for all algorithms converged to the proper expected value (see Fig. 1d),
but the DE-MCZ (denoted by the blue line in this graph) exhibited the slowest
convergence in comparison with the DE-MC (the green line) and DE-MCmodes
(the orange line, respectively). The above-mentioned colors of the graphs have
the same meaning in the following figures.

The convergence of the means was also analyzed, as the mean is one of the
most important descriptive statistic of the sample and also the ultimate goal in
many of the MCMC schemes.

When the initial population was generated from N(0, 1) instead of N(15, 2),
as described previously, the effectiveness of the DE-MCmodes was even more
clear. The DE-MCmodes required 699 iterations to fulfill the previously specified
stop condition, and the DE-MCZ did not converge even after 3000 steps. The
parameter γ was changed to 5 every 10 iterations for both methods. Moreover,
the estimated density for the last iteration of the DE-MCmodes (see Fig. 2a) is
significantly better fitted to f(x) than for the DE-MCZ (see Fig. 2b).

In the second example, a mixture of two 2-dimensional normal distributions

0.6 ·N(µ1, Σ1) + 0.4 ·N(µ2, Σ2) (4)

with

µ1 = [10, 10], Σ1 =

[
1 0.5
0.5 1

]
, µ2 = [25, 25], Σ2 =

[
1 −0.5

−0.5 2

]
, (5)

was used. In this case, the modes were rather close to each other, but they differed
concerning their heights (see Fig. 3a). During the simulations, the parameters
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(a) Last iteration of the DE-MC method (b) Last iteration of the DE-MCZ method

(c) Last iteration of the DE-MCmodes

method
(d) Convergence of the means

Fig. 1. Comparison of the numerical results for the mixture of two normal distributions
for N(15, 2) starting distribution.
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(a) Last iteration of the DE-MCZ method (b) Last iteration of the DE-MCmodes

method

Fig. 2. Comparison of the numerical results for the mixture of two normal distributions
for N(0, 1) starting distribution.

N∗ = 30, N = 20,M0 = 35,K∗ = 5,K = 5, γ = 2.38/
√
2, R = 1.05, L =

400, nmodes = 0, kmodes = 8 were set. To better identify the modes in this 2-
dimensional setting, each possible mode was compared with its 8 neighbors.
Because there were problems with fulfilling the stop condition for all of the
algorithms, the simulations were conducted for 3000 iterations. The DE-MCmodes
gave the best fit to the target density, which was especially seen for the Y axis
(see Figs. 3b–3d). Also the modes were properly identified in the obtained matrix
V (see Fig. 3e).

The third example concerned the mixture of three logistic distributions

0.4 · Log(−23, 1.5) + 0.3 · Log(−14, 1.6) + 0.3 · Log(28, 1.2), (6)

where Log(µ, s) stands for the logistic distribution with the location µ and scale
parameter s. In this case, the two modes were close to each other, and the third
one – more distant from them. The algorithms were started from N(0, 1) with
the parameters N∗ = N = 20,M0 = 25,K∗ = 5,K = 10, γ = 2.38/

√
2, R =

1.05, L = 200, nmodes = 0, kmodes = 2. The parameter γ was not altered during
iterations. The DE-MC method did not fulfill the stop condition and was called
a halt after the specified 7000 iterations, the DE-MCZ converged sooner, after
4049 steps, but the DE-MCmodes required more iterations – 6749 in this case.
However, the results of the DE-MCmodes approach showed their best fit to the
target density, and all of the existing three modes were clearly identified (see Figs.
4a–4c). In Fig. 4d, the convergence of the means can be observed. It seems that
the DE-MCmodes method had greater flexibility in jumping among the modes.

4 Conclusion

To generate a random sample from a complex density, various algorithms were
suggested in the literature. Such samples are then used, e.g., in statistical infer-
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(a) The target density (b) Last iteration of the DE-MC method
(Y axis)

(c) Last iteration of the DE-MCZ method
(Y axis)

(d) Last iteration of the DE-MCmodes

method (Y axis)

(e) The modes identified in the DE-
MCmodes method

Fig. 3. Comparison of the numerical results for the mixture of two 2-dimensional nor-
mal distributions.
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(a) Last iteration of the DE-MC method (b) Last iteration of the DE-MCZ method

(c) Last iteration of the DE-MCmodes

method
(d) Convergence of the means

Fig. 4. Comparison of the numerical results for the mixture of three logistic distribu-
tions.
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ence problems including crisp or fuzzy data. To overcome issues related to mul-
timodal target densities, we improved the DE-MCZ method with the modes de-
tection and selection steps. The introduced two-phase method, the DE-MCmodes
approach, was numerically compared with its classical counterparts – the DE-
MC and DE-MCZ algorithms. It seems that the DE-MCmodes method generates
samples that are closer to the desired target distribution and converges faster.
Obviously, further experiments are still necessary, e.g., the probability distri-
butions with almost “merging” or some “artificial” modes can be numerically
analyzed. Equipping the DE-MC methods with other statistical tools to iden-
tify the existing “unusual phenomena” of the sampling distributions can be also
fruitful in future research.
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